Download Free Fluorescent Imaging Book in PDF and EPUB Free Download. You can read online Fluorescent Imaging and write the review.

Fluorescence imaging, at macro, micro, and submicro scales, has revolutionized biological science in the past 30 years. Immunolabelling has provided precise targeting of molecules in fixed tissue, while fluorescent proteins have enabled localization in living tissues. Fluorescent indicators enable imaging of dynamic changes in cell metabolism. This book covers, for the first time, imaging at all scales from macro to submicro (superresolution). Its authors include Robert Clegg, legendary teacher and researcher (who, sadly, passed away during the editing); Jim Pawley, editor of several editions of the Handbook of Biological Confocal Microscopy; the famous and now dispersed New Zealand team of Mark Cannell, Christian Soeller, and David Baddeley; Robert Hoffman, pioneer of whole-animal imaging in cancer research; Andreas Schoenle and Christian Eggeling on STED nanoscopy, and many more famous participants in this field. All the contributors are at the cutting edge of their field.
This book focuses on the latest fluorescent materials for cell imaging. Cell imaging is a widely used basic technique that helps scientists gain a better understanding of biological functions through studies of cellular structure and dynamics. In the past decades, the development of a variety of new fluorescent materials has significantly extended the applications of cellular imaging techniques. This book presents recently developed fluorescent materials, including semiconductor quantum dots, carbon dots, silicon nanoparticles, metal nanoclusters, upconversion nanoparticles, conjugated polymers/polymer dots, aggregation-induced emission (AIE) probes, and coordination compounds, used for various cellular imaging purposes. It will appeal to cell biologists and other researchers in academia, industry and clinical settings who are interested in the technical development and advanced applications of fluorescence imaging in cells, tissues and organisms to explore the mechanisms of biological functions and diseases.
Zu dem Thema gibt es viele Publikationen, die von Experten für Experten geschrieben wurden. Dieses Buch wendet sich insbesondere an Studenten höherer Semester und Forscher, denen das Hintergrundwissen der Physik fehlt, um neuartige Verfahren der Fluoreszenzmikroskopie zu verstehen. Die zweite Auflage wartet mit neuen Kapiteln und einer erweiterten Einführung auf. Der Schwerpunkt liegt auf der hochauflösenden und Einzelmolekül-Mikroskopie. Jedes Kapitel wurde von einem anerkannten Experten des Fachgebiets geschrieben und sorgfältig überarbeitet, um so die Entwicklungen der letzten Jahre wiederzugeben.
This book presents a comprehensive overview and outlook for the future of indocyanine green (ICG) fluorescence navigation surgery, which is attracting clinical interest as a safe and less invasive procedure not only in detecting cerebral vessels, coronary arteries, and biliary trees, but also in identifying sentinel lymph nodes in cancer. The book starts with the characteristics of ICG and photodynamic cameras/endoscopes, followed by detailed descriptions of the applications of ICG fluorescence imaging in various areas such as ocular surgery, neurosurgery, cardiovascular surgery, and plastic surgery. It also covers identifying sentinel lymph nodes in breast cancer as well as cancers of the gastrointestinal tract, and provides valuable information for hepato-biliary-pancreatic surgeons, such as identifying tattooing of liver segments and bile leakage. Written entirely by experts in their respective areas, ICG Fluorescence Imaging and Navigation Surgery offers an essential resource for surgeons operating on cancers and vascular disorders in the brain and cardiovascular systems and in plastic surgery.
Providing much-needed information on fluorescence spectroscopy and microscopy, this ready reference covers detection techniques, data registration, and the use of spectroscopic tools, as well as new techniques for improving the resolution of optical microscopy below the resolution gap. Starting with the basic principles, the book goes on to treat fluorophores and labeling, single-molecule fluorescence spectroscopy and enzymatics, as well as excited state energy transfer, and super-resolution fluorescence imaging. Examples show how each technique can help in obtaining detailed and refined information from individual molecular systems.
This book focuses on the emerging non-invasive imaging technique of Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO). FLIO reveals unique information on retinal diseases, ranging from age-related macular degeneration and vascular diseases to hereditary retinal dystrophies. Fluorescence lifetimes enable the evaluation of disease progression before irreversible structural changes occur. The image acquisition is suitable for diagnostic purposes and follow-up examinations to investigate the natural course of disease, and to monitor the effects of possible therapies. This book fills the gap between available literature and gives state-of-the-art guidance on the principles of the FLIO technique, image acquisition, and data analysis. Written by a team of expert leaders within this field, this book will be relevant for scientists and clinicians with an interest in ophthalmoscopy.
New applications for an old technique Indocyanine green (ICG) fluorescence has been used for imaging purposes for more than half a century; First employed by ophthalmologists for visualizing the retinal artery in the late 1960s, the application of ICG fluorescence imaging has since been continuously expanded. Recently, advances in imaging technologies have led to renewed attention regarding the use of ICG in the field of hepatobiliary surgery, as a new tool for visualizing the biliary tree and liver tumors. This book introduces cutting-edge knowledge about fluorescence imaging techniques using both ICG and other new promising chemicals. After an introductory chapter on the history and basic technique of fluorescence imaging for hepatobiliary-pancreatic surgery, various clinical applications of ICG fluorescence imaging are discussed. These range from the identification of various malignancies to the use of imaging in surgery. The last part of this publication is dedicated to an outlook on near-future technology.
This new volume, number 123, of Methods in Cell Biology looks at methods for quantitative imaging in cell biology. It covers both theoretical and practical aspects of using optical fluorescence microscopy and image analysis techniques for quantitative applications. The introductory chapters cover fundamental concepts and techniques important for obtaining accurate and precise quantitative data from imaging systems. These chapters address how choice of microscope, fluorophores, and digital detector impact the quality of quantitative data, and include step-by-step protocols for capturing and analyzing quantitative images. Common quantitative applications, including co-localization, ratiometric imaging, and counting molecules, are covered in detail. Practical chapters cover topics critical to getting the most out of your imaging system, from microscope maintenance to creating standardized samples for measuring resolution. Later chapters cover recent advances in quantitative imaging techniques, including super-resolution and light sheet microscopy. With cutting-edge material, this comprehensive collection is intended to guide researchers for years to come. Covers sections on model systems and functional studies, imaging-based approaches and emerging studies Chapters are written by experts in the field Cutting-edge material
This book starts at an introductory level and leads reader to the most advanced topics in fluorescence imaging and super-resolution techniques that have enabled new developments such as nanobioimaging, multiphoton microscopy, nanometrology and nanosensors. The interdisciplinary subject of fluorescence microscopy and imaging requires complete knowledge of imaging optics and molecular physics. So, this book approaches the subject by introducing optical imaging concepts before going in more depth about advanced imaging systems and their applications. Additionally, molecular orbital theory is the important basis to present molecular physics and gain a complete understanding of light-matter interaction at the geometrical focus. The two disciplines have some overlap since light controls the molecular states of molecules and conversely, molecular states control the emitted light. These two mechanisms together determine essential imaging factors such as, molecular cross-section, Stoke shift, emission and absorption spectra, quantum yield, signal-to-noise ratio, Forster resonance energy transfer (FRET), fluorescence recovery after photobleaching (FRAP) and fluorescence lifetime. These factors form the basis of many fluorescence based devices. The book is organized into two parts. The first part deals with basics of imaging optics and its applications. The advanced part takes care of several imaging techniques and related instrumentation that are developed in the last decade pointing towards far-field diffraction unlimited imaging.
This book reviews the most recent developments of fluorescent imaging techniques for medicinal chemistry research and biomedical applications, including cell imaging, in vitro diagnosis and in vivo imaging. Fluorescent imaging techniques play an important role in basic research, drug discovery and clinical translation. They have great impact to many fields including chemical biology, cell biology, medical imaging, cancer diagnosis and treatment, pharmaceutical science, among others, and they have facilitated our understanding of diseases and helped to develop many novel powerful tools for imaging and treatment of diseases. This book will appeal to scientists from numerous fields such as chemistry, pharmaceutical science, biology, materials science, and medicine, and it will serve as a very useful and handy resource for readers with different levels of scientific knowledge, ranging from entry level to professional level.