Download Free Flow Mixing And Heat Transfer In Furnaces Book in PDF and EPUB Free Download. You can read online Flow Mixing And Heat Transfer In Furnaces and write the review.

HMT: The Science & Application of Heat and Mass Transfer: Reports, Reviews & Computer Programs, Volume 2: Flow, Mixing and Heat Transfer in Furnaces is a collection of papers from the First Conference on Mechanical Power Engineering. The title presents experimental and theoretical research in the field of flow, mixing, and heat transfer in furnaces. The experimental papers in the selection include the effect of the exit section geometry and furnace length on mixing in a cold model industrial furnace, as well as the effect of some parameters on the characteristics of heat liberated along a cylindrical reversed flow furnace. The theoretical papers tackle topics such as study of mixing of two coaxial swirling jets in a cold model furnace and numerical computations of turbulent swirling flames in axisymmetric combustors. The book will be of great use to students, researchers, and practitioners of mechanical engineering.
Theory and Calculation of Heat Transfer in Furnaces covers the heat transfer process in furnaces, how it is related to energy exchange, the characteristics of efficiency, and the cleaning of combustion, providing readers with a comprehensive understanding of the simultaneous physical and chemical processes that occur in boiler combustion, flow, heat transfer, and mass transfer. - Covers all the typical boilers with most fuels, as well as the effects of ash deposition and slagging on heat transfer - Combines mature and advanced technologies that are easy to understand and apply - Describes basic theory with real design that is based on meaningful experimental data
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Selected Works of Professor D. Brian Spalding focuses on the many contributions of Professor Spalding on thermodynamics. This compilation of his works is done to honor the professor on the occasion of his 60th birthday. Relatively, the works contained in this book are selected to highlight the genius of Professor Spalding in this field of interest. The book presents various research on combustion, heat transfer, turbulence, and flows. His thinking on separated flows paved the way for the multi-dimensional modeling of turbulence. Arguments on the universality of the models of turbulence and the problems that are associated with combustion engineering are clarified. The text notes the importance of combustion science as well as the problems associated with it. Mathematical computations are also presented in determining turbulent flows in different environments, including on curved pipes, curved ducts, and rotating ducts. These calculations are presented to further strengthen the claims of Professor Spalding in this discipline. The book is a great find for those who are interested in studying thermodynamics.
Since the publication of the first edition of Multiphase Flow with Droplets and Particles, there have been significant advances in science and engineering applications of multiphase fluid flow. Maintaining the pedagogical approach that made the first edition so popular, this second edition provides a background in this important area of fluid mecha
Multiphase Flows with Droplets and Particles provides an organized, pedagogical study of multiphase flows with particles and droplets. This revised edition presents new information on particle interactions, particle collisions, thermophoresis and Brownian movement, computational techniques and codes, and the treatment of irregularly shaped particles. An entire chapter is devoted to the flow of nanoparticles and applications of nanofluids. Features Discusses the modelling and analysis of nanoparticles. Covers all fundamental aspects of particle and droplet flows. Includes heat and mass transfer processes. Features new and updated sections throughout the text. Includes chapter exercises and a Solutions Manual for adopting instructors. Designed to complement a graduate course in multiphase flows, the book can also serve as a supplement in short courses for engineers or as a stand-alone reference for engineers and scientists who work in this area.
This book provides a much needed and thorough treatment of the heat transfer in agitated disperse systems. It gives predictive equations for the heat transfer in moving beds, bubbling and circulating fluidized beds, pneumatic transport in vertical tubes and particulate fluidized beds. Owing to the many different modes of activation of heat transfer, the basic approach of the book is to provide experimental evidence of the relevance of particle motion to the proximity of solid surfaces for the heat transfer observed. This has been achieved by the evaluation of experiments obtained with a newly developed pulsed light method using luminous particles. Heat Transfer in Fluidized Beds will be of great use to students and researchers involved in heat transfer and thermodynamics.