Download Free Flow And Heat Or Mass Transfer In The Chemical Process Industry Book in PDF and EPUB Free Download. You can read online Flow And Heat Or Mass Transfer In The Chemical Process Industry and write the review.

This book is a printed edition of the Special Issue "Flow and Heat or Mass Transfer in the Chemical Process Industry" that was published in Fluids
Gas-solid flows are involved in numerous industrial processes and occur in various natural phenomena. This authoritative book addresses the fundamental principles that govern gas-solid flows and the application of these principles to various gas-solid flow systems. The book is arranged in two parts: Part I deals with basic relationships and phenomena, including particle size and properties, collision mechanics, momentum transfer, heat and mass transfer, basic equations, and intrinsic phenomena in gas-solid flows. Part II discusses gas-solid flow systems of industrial interest such as gas-solid separators, hoppers and standpipes, dense-phase fluidized beds, fluidized beds, pneumatic conveying systems, and heat and mass transfer in fluidization systems. As a comprehensive text on gas-solid flows, which includes end-of-chapter problems, this book is aimed at students, but will also be useful to a broad range of engineers and applied scientists. Solutions manual available.
Non-Newtonian materials are encountered in virtually all of the chemical and process industries and a full understanding of their nature and flow characteristics is an essential requirement for engineers and scientists involved in their formulation and handling. This book will bridge the gap between much of the highly theoretical and mathematically complex work of the rheologist and the practical needs of those who have to design and operate plants in which these materials are handled and processed. At the same time, numerous references are included for the benefit of those who need to delve more deeply into the subject.The starting point for any work on non-newtonian fluids is their characterisation over the range of conditions to which they are likely to be subjected during manufacture or utilisation, and this topic is treated early on in the book in a chapter commissioned from an expert in the field of rheological measurements. Coverage of topics is extensive and this book offers a unique and rich selection of material including the flow of single phase and multiphase mixtures in pipes, in packed and fluidised bed systems, heat and mass transfer in boundary layers and in simple duct flows, and mixing etc.An important and novel feature of the book is the inclusion of a wide selection of worked examples to illustrate the methods of calculation. It also incorporates a large selection of problems for the reader to tackle himself.
This broad-based book covers the three major areas of Chemical Engineering. Most of the books in the market involve one of the individual areas, namely, Fluid Mechanics, Heat Transfer or Mass Transfer, rather than all the three. This book presents this material in a single source. This avoids the user having to refer to a number of books to obtain information. Most published books covering all the three areas in a single source emphasize theory rather than practical issues. This book is written with emphasis on practice with brief theoretical concepts in the form of questions and answers, not adopting stereo-typed question-answer approach practiced in certain books in the market, bridging the two areas of theory and practice with respect to the core areas of chemical engineering. Most parts of the book are easily understandable by those who are not experts in the field. Fluid Mechanics chapters include basics on non-Newtonian systems which, for instance find importance in polymer and food processing, flow through piping, flow measurement, pumps, mixing technology and fluidization and two phase flow. For example it covers types of pumps and valves, membranes and areas of their use, different equipment commonly used in chemical industry and their merits and drawbacks. Heat Transfer chapters cover the basics involved in conduction, convection and radiation, with emphasis on insulation, heat exchangers, evaporators, condensers, reboilers and fired heaters. Design methods, performance, operational issues and maintenance problems are highlighted. Topics such as heat pipes, heat pumps, heat tracing, steam traps, refrigeration, cooling of electronic devices, NOx control find place in the book. Mass transfer chapters cover basics such as diffusion, theories, analogies, mass transfer coefficients and mass transfer with chemical reaction, equipment such as tray and packed columns, column internals including structural packings, design, operational and installation issues, drums and separators are discussed in good detail. Absorption, distillation, extraction and leaching with applications and design methods, including emerging practices involving Divided Wall and Petluk column arrangements, multicomponent separations, supercritical solvent extraction find place in the book.
Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems. Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint. This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems. - No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide - Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis - World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology
This textbook is targetted to undergraduate students in chemical engineering, chemical technology, and biochemical engineering for courses in mass transfer, separation processes, transport processes, and unit operations. The principles of mass transfer, both diffusional and convective have been comprehensively discussed. The application of these principles to separation processes is explained. The more common separation processes used in the chemical industries are individually described in separate chapters. The book also provides a good understanding of the construction, the operating principles, and the selection criteria of separation equipment. Recent developments in equipment have been included as far as possible. The procedure of equipment design and sizing has been illustrated by simple examples. An overview of different applications and aspects of membrane separation has also been provided. ‘Humidification and water cooling’, necessary in every process indus-try, is also described. Finally, elementary principles of ‘unsteady state diffusion’ and mass transfer accompanied by a chemical reaction are covered. SALIENT FEATURES : • A balanced coverage of theoretical principles and applications. • Important recent developments in mass transfer equipment and practice are included. • A large number of solved problems of varying levels of complexities showing the applications of the theory are included. • Many end-chapter exercises. • Chapter-wise multiple choice questions. • An Instructors manual for the teachers.
Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors
Cutting-edge heat transfer principles and design applications Apply advanced heat transfer concepts to your chemical, petrochemical, and refining equipment designs using the detailed information contained in this comprehensive volume. Filled with valuable graphs, tables, and charts, Heat Transfer in Process Engineering covers the latest analytical and empirical methods for use with current industry software. Select heat transfer equipment, make better use of design software, calculate heat transfer coefficients, troubleshoot your heat transfer process, and comply with design and construction standards. Heat Transfer in Process Engineering allows you to: Review heat transfer principles with a direct focus on process equipment design Design, rate, and specify shell and tube, plate, and hairpin heat exchangers Design, rate, and specify air coolers with plain or finned tubes Design, rate, and specify different types of condensers with tube or shellside condensation for pure fluids or multicomponent mixtures Understand the principles and correlations of boiling heat transfer, with their limits on and applications to different types of reboiler design Apply correlations for fired heater ratings, for radiant and convective zones, and calculate fuel efficiency Obtain a set of useful Excel worksheets for process heat transfer calculations
This classic text is an exploration of the practical aspects of thermodynamics and heat transfer. It was designed for daily use and reference for system design and for troubleshooting common engineering problems-an indispensable resource for practicing process engineers.