Download Free Flexible Pavement Condition Evaluation Using Deflection Basin Parameters And Dynamic Finite Element Analysis Implemented By Artificial Neural Networks Book in PDF and EPUB Free Download. You can read online Flexible Pavement Condition Evaluation Using Deflection Basin Parameters And Dynamic Finite Element Analysis Implemented By Artificial Neural Networks and write the review.

As with the previous two symposia, the 32 papers from the June/July, 1999, Seattle symposium present advances in the nondestructive testing of pavements using conventional falling weight deflectometer techniques and other promising techniques such as ground penetrating radar, rolling weight deflecto
This book is the fourth volume of the proceedings of the 4th GeoShanghai International Conference that was held on May 27 - 30, 2018. This volume, entitled “Transportation Geotechnics and Pavement Engineering”, represents the recent advances and technologies in transportation geotechnics and pavement engineering. This book covers a wide range of topics, from transportation geotechnics, to geomechanics at various length scales, to pavement materials and structures. The book offers a unique mix of numerical modeling studies, experimental studies, and case studies from industry. It may be of interest to researchers and practitioners in the fields of transportation engineering and pavement engineering. Each of the papers included in this book received at least two positive peer reviews. The editors would like to express their sincerest appreciation to all of the anonymous reviewers all over the world, for their diligent work.
The objective of this study is to develop a mechanistic-empirical method for assessing pavement layer conditions and estimating the remaining life of flexible pavements using multi-load level Falling Weight Deflectometer (FWD) deflections. A dynamic finite element program, incorporating a stress-dependent soil model, was developed to generate the synthetic deflection database. Based on this synthetic database, the relationships between surface deflections and critical pavement responses, such as stresses and strains in each individual layer, have been established. A condition assessment procedure for asphalt pavements that uses multi-load level FWD deflections has been developed using these relationships. The verification study was conducted using field data.
"The behavior of flexible pavements under traffic and environmental loading can be significantly affected by subsurface conditions. Inadequate support conditions under the surface can lead to excessive pavement deformations, often leading to structural and functional failure. This research effort focused on assessing the effects of base/subbase and subgrade layer conditions on flexible pavement behavior. The results of this study are presented in the form of two journal manuscripts. The first manuscript focuses on utilizing pavement structural and functional evaluation data in making pavement rehabilitation decisions. Visual distress surveys and Falling Weight Deflectometer (FWD) testing are often carried out by agencies as a part of their pavement preservation programs. Although back-calculation of individual layer moduli from FWD data is a common approach to assess the pavement's structural condition, the accuracy of this approach is largely dependent on exact estimates of individual layer thicknesses. Considering the lack of pavement layer thickness information for all locations, this study used Deflection Basin Parameters (DBPs) calculated from FWD test data to make inferences regarding the structural condition of individual pavement layers in conventional flexible pavements. The adequacy of DBPs to assess the structural condition of individual pavement layers was assessed through Finite-Element (FE) Modeling. Subsequently, four selected pavement sections in the state of Idaho were analyzed based on this method to recommend suitable rehabilitation strategies. The second manuscript focused on studying how improvements to subsurface layers can affect the flexible pavement behavior over expansive soil deposits. A recently completed research study at Boise State University investigated a particular section of US-95 near the Idaho-Oregon border that has experienced significant differential heave due to expansive soils. Laboratory characterization of soil samples indicated the presence of highly expansive soils up to depths of 7.6 m (26 ft.) from the pavement surface. Through subsequent numerical modeling efforts, a hybrid geosynthetic system comprising geocells and geogrids was recommended for implementation during pavement reconstruction. This research effort focused on evaluating the suitability of polyurethane grout injection as a potential remedial measure for this pavement section. Laboratory testing of unbound materials treated with a High-Density Polyurethane (HDP) demonstrated that resilient modulus and shear strength properties could be improved significantly. Finite Element modeling of the problematic US-95 pavement section indicated that depending on the treated layer thickness, the differential heave magnitude can be reduced significantly, presenting polyurethane injection as a potential nondestructive remedial measure. ."--Boise State University ScholarWorks.
Project monitored flexible pavement dynamic deflections, roughness, and distress over a six-year period. Results show present surface condition and serve as a basis for evaluating rehabilitation needs.
"For more than 50 years, the Transportation Research Record has been internationally recognized as one of the preeminent peer-reviewed journals for transportation research papers from authors in the United States and from around the world. One of the most cited transportation journals, the TRR offers unparalleled depth and breadth in the coverage of transportation topics from both academic and practitioner perspectives. All modes of passenger and freight transportation are addressed in papers covering a wide array of disciplines, including policy, planning, administration, economics and financing, operations, construction, design, maintenance, safety, and more."--Publisher's website
There is a growing interest for the use of mechanistic procedures and analytical methods in the design and evaluation of pavement structure rather than empirical design procedures. The mechanistic procedures rely on predicting pavement response under traffic and environmental loading (i.e., stress, strain, and deflection) and relating these responses to pavement field performance. A research program has been developed at the Center for Pavement and Transportation Technology (CPATT) test track to investigate the impact of traffic and environmental parameters on flexible pavement response. This unique facility, located in a climate with seasonal freeze/thaw events, is equipped with an internet accessible data acquisition system capable of reading and recording sensors using a high sampling rate. A series of controlled loading tests were performed to investigate pavement dynamic response due to various loading configurations. Environmental factors and pavement performance were monitored over a two-year period. Analyses were performed using the two dimensional program MichPave to predict pavement responses. The dynamic modulus test was chosen to determine viscoelastic properties of Hot Mix Asphalt (HMA) material. A three-step procedure was implemented to simplify the incorporation of laboratory determined viscoelastic properties of HMA into the finite element (FE) model. The FE model predictions were compared with field measured pavement response. Field test results showed that pavement fully recovers after each wheel pass. Wheel wander and asphalt mid-depth temperature changes were found to have significant impact on asphalt longitudinal strain. Wheel wander of 16 cm reduced asphalt longitudinal strains by 36 percent and daily temperature fluctuations can double the asphalt longitudinal strain. Results from laboratory dynamic modulus tests found that Hot Laid 3 (HL3) dynamic modulus is an exponential function of the test temperature when loading frequency is constant, and that the HL3 dynamic modulus is a non-linear function of the loading frequency when the test temperature is constant. Results from field controlled wheel load tests found that HL3 asphalt longitudinal strain is an exponential function of asphalt mid-depth temperature when the truck speed and wheel loading are constant. This indicated that the laboratory measured dynamic modulus is inversely proportional to the field measured asphalt longitudinal strain. Results from MichPave finite element program demonstrated that a good agreement between field measured asphalt longitudinal strain and MichPave prediction exists when field represented dynamic modulus is used as HMA properties. Results from environmental monitoring found that soil moisture content and subgrade resilient modulus changes in the pavement structure have a strong correlation and can be divided into three distinct Seasonal Zones. Temperature data showed that the pavement structure went through several freeze-thaw cycles during the winter months. Daily asphalt longitudinal strain fluctuations were found to be correlated with daily temperature changes and asphalt longitudinal strain fluctuations as high as 650 [mu]m/m were recorded. The accumulation of irrecoverable asphalt longitudinal strain was observed during spring and summer months and irrecoverable asphalt longitudinal strain as high as 2338 [mu]m/m was recorded.