Download Free Flash Of The Cathode Rays Book in PDF and EPUB Free Download. You can read online Flash Of The Cathode Rays and write the review.

The electron is fundamental to almost all aspects of modern life, controlling the behavior of atoms and how they bind together to form gases, liquids, and solids. Flash of the Cathode Rays: A History of J.J. Thomson's Electron presents the compelling story of the discovery of the electron and its role as the first subatomic particle in nature. The
The electron is fundamental to almost all aspects of modern life, controlling the behavior of atoms and how they bind together to form gases, liquids, and solids. Flash of the Cathode Rays: A History of J.J. Thomson's Electron presents the compelling story of the discovery of the electron and its role as the first subatomic particle in nature. The book traces the evolution of the concept of electrical charge, from the earliest glow discharge studies to the final cathode ray and oil drop experiments of J.J. Thomson and Robert Millikan. It also provides an overview of the history of modern physics up to the advent of the old quantum theory around 1920. Consolidating scholarly material while incorporating new material discovered by the well-respected author, the book covers the continental and English race for the source of the cathode rays, culminating in Thomson's corpuscle in 1897. It explores the events leading to Millikan's unambiguous isolation of the electron and the simultaneous circumstances surrounding the birth of Ernest Rutherford's nuclear atom and the discovery of radioactivity in 1896. The author also focuses on the controversies over N-rays, Becquerel's positive electron, and the famous Ehrenhaft-Millikan dispute over subelectrons. Scholarly yet accessible to those with basic physics knowledge, this book should be of interest to historians of science, professional scientists and engineers, teachers and students of physics, and general readers interested in the development of modern physics.
Describes the early life of Charles Lindberg, leading up to his history-making transatlantic flight in 1927.
Both a history and a metahistory, Representing Electrons focuses on the development of various theoretical representations of electrons from the late 1890s to 1925 and the methodological problems associated with writing about unobservable scientific entities. Using the electron—or rather its representation—as a historical actor, Theodore Arabatzis illustrates the emergence and gradual consolidation of its representation in physics, its career throughout old quantum theory, and its appropriation and reinterpretation by chemists. As Arabatzis develops this novel biographical approach, he portrays scientific representations as partly autonomous agents with lives of their own. Furthermore, he argues that the considerable variance in the representation of the electron does not undermine its stable identity or existence. Raising philosophical issues of contentious debate in the history and philosophy of science—namely, scientific realism and meaning change—Arabatzis addresses the history of the electron across disciplines, integrating historical narrative with philosophical analysis in a book that will be a touchstone for historians and philosophers of science and scientists alike.
In this richly-illustrated 2004 book the author combines history with real science. Using an original approach he presents the major achievements of twentieth-century physics - for example, relativity, quantum mechanics, atomic and nuclear physics, the invention of the transistor and the laser, superconductivity, binary pulsars, and the Bose-Einstein condensate - each as they emerged as the product of the genius of those physicists whose labours, since 1901, have been crowned with a Nobel Prize. Here, in the form of a year-by-year chronicle, biographies and revealing personal anecdotes help bring to life the main events of the past hundred years. The work of the most famous physicists of the twentieth century - great names, like the Curies, Bohr, Heisenberg, Einstein, Fermi, Feynman, Gell-Mann, Rutherford, and Schrödinger - is presented, often in the words and imagery of the prize-winners themselves.
A new perspective on how scientists reason about the world, design and interpret experiments and communicate with one another and with the larger society outside science.
This volume contains a selection of the pioneering papers by Nobel Laureate George Porter. It outlines his work on fast reactions, occurring in times from milliseconds to femtoseconds, in photochemistry, photosynthesis and solar energy, and includes the papers which led to the award of the Nobel Prize in Chemistry in 1967 for his work on flash photolysis. Lord Porter, President of the Royal Society from 1985 to 1990, is Chairman of the Centre for Photomolecular Sciences, Imperial College, and Emeritus Professor of Chemistry of the Royal Institution of Great Britain.This book is divided into 11 chapters, each covering an area of Lord Porter's work. Each chapter will contain an introduction by Lord Porter, a selection of his most important papers in that field and a list of his other relevant papers.
Enigmatic for many years, cosmic rays are now known to be not rays at all, but particles, the nuclei of atoms, raining down continually on the earth, where they can be detected throughout the atmosphere and sometimes even thousands of feet underground. This book tells the long-running detective story behind the discovery and study of cosmic rays, a story that stretches from the early days of subatomic particle physics in the 1890s to the frontiers of high-energy astrophysics today. Writing for the amateur scientist and the educated general reader, Michael Friedlander, a cosmic ray researcher, relates the history of cosmic ray science from its accidental discovery to its present status. He explains how cosmic rays are identified and how their energies are measured, then surveys current knowledge and theories of thin cosmic rain. The most thorough, up-to-date, and readable account of these intriguing phenomena, his book makes us party to the search into the nature, behavior, and origins of cosmic rays—and into the sources of their enormous energy, sometimes hundreds of millions times greater than the energy achievable in the most powerful earthbound particle accelerators. As this search led unexpectedly to the discovery of new particles such as the muon, pion, kaon, and hyperon, and as it reveals scenes of awesome violence in the cosmos and offers clues about black holes, supernovas, neutron stars, quasars, and neutrinos, we see clearly why cosmic rays remain central to an astonishingly diverse range of research studies on scales infinitesimally small and large. Attractively illustrated, engagingly written, this is a fascinating inside look at a science at the center of our understanding of our universe.
"Photomultipliers are extremely sensitive light detectors with the capability to detect single photons. In multiplying the charge produced by incident light by up to 100 million times, these devices are essential to a wide range of applications, from medical instrumentation to astronomical observations. This complete and authoritative guide will provide...a deeper understanding of the operating principles of these devices." -- Publisher's description, back cover.