Download Free Fixed Point Theory And Best Approximation Book in PDF and EPUB Free Download. You can read online Fixed Point Theory And Best Approximation and write the review.

The aim of this volume is to make available to a large audience recent material in nonlinear functional analysis that has not been covered in book format before. Here, several topics of current and growing interest are systematically presented, such as fixed point theory, best approximation, the KKM-map principle, and results related to optimization theory, variational inequalities and complementarity problems. Illustrations of suitable applications are given, the links between results in various fields of research are highlighted, and an up-to-date bibliography is included to assist readers in further studies. Audience: This book will be of interest to graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations and expansions, convex sets and related geometric topics and game theory.
In recent years, the fixed point theory of Lipschitzian-type mappings has rapidly grown into an important field of study in both pure and applied mathematics. It has become one of the most essential tools in nonlinear functional analysis. This self-contained book provides the first systematic presentation of Lipschitzian-type mappings in metric and Banach spaces. The first chapter covers some basic properties of metric and Banach spaces. Geometric considerations of underlying spaces play a prominent role in developing and understanding the theory. The next two chapters provide background in terms of convexity, smoothness and geometric coefficients of Banach spaces including duality mappings and metric projection mappings. This is followed by results on existence of fixed points, approximation of fixed points by iterative methods and strong convergence theorems. The final chapter explores several applicable problems arising in related fields. This book can be used as a textbook and as a reference for graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations by iteration theory, convexity and related geometric topics, and best approximation theory.
Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.
This monograph gives an introductory treatment of the most important iterative methods for constructing fixed points of nonlinear contractive type mappings. For each iterative method considered, it summarizes the most significant contributions in the area by presenting some of the most relevant convergence theorems. It also presents applications to the solution of nonlinear operator equations as well as the appropriate error analysis of the main iterative methods.
This book focusing on Metric fixed point theory is designed to provide an extensive understanding of the topic with the latest updates. It provides a good source of references, open questions and new approaches. While the book is principally addressed to graduate students, it is also intended to be useful to mathematicians, both pure and applied.
It is an indisputable argument that the formulation of metrics (by Fréchet in the early 1900s) opened a new subject in mathematics called non-linear analysis after the appearance of Banach’s fixed point theorem. Because the underlying space of this theorem is a metric space, the theory that developed following its publication is known as metric fixed point theory. It is well known that metric fixed point theory provides essential tools for solving problems arising in various branches of mathematics and other sciences such as split feasibility problems, variational inequality problems, non-linear optimization problems, equilibrium problems, selection and matching problems, and problems of proving the existence of solutions of integral and differential equations are closely related to fixed point theory. For this reason, many people over the past seventy years have tried to generalize the definition of metric space and corresponding fixed point theory. This trend still continues. A few questions lying at the heart of the theory remain open and there are many unanswered questions regarding the limits to which the theory may be extended. Metric Structures and Fixed Point Theory provides an extensive understanding and the latest updates on the subject. The book not only shows diversified aspects of popular generalizations of metric spaces such as symmetric, b-metric, w-distance, G-metric, modular metric, probabilistic metric, fuzzy metric, graphical metric and corresponding fixed point theory but also motivates work on existing open problems on the subject. Each of the nine chapters—contributed by various authors—contains an Introduction section which summarizes the material needed to read the chapter independently of the others and contains the necessary background, several examples, and comprehensive literature to comprehend the concepts presented therein. This is helpful for those who want to pursue their research career in metric fixed point theory and its related areas. Features Explores the latest research and developments in fixed point theory on the most popular generalizations of metric spaces Description of various generalizations of metric spaces Very new topics on fixed point theory in graphical and modular metric spaces Enriched with examples and open problems This book serves as a reference for scientific investigators who need to analyze a simple and direct presentation of the fundamentals of the theory of metric fixed points. It may also be used as a text book for postgraduate and research students who are trying to derive future research scope in this area.
This is the collection of the refereed and edited papers presented at the 8th Texas International Conference on Approximation Theory. It is interdisciplinary in nature and consists of two volumes. The central theme of Vol. I is the core of approximation theory. It includes such important areas as qualitative approximations, interpolation theory, rational approximations, radial-basis functions, and splines. The second volume focuses on topics related to wavelet analysis, including multiresolution and multi-level approximation, subdivision schemes in CAGD, and applications.
This book provides a primary resource in basic fixed-point theorems due to Banach, Brouwer, Schauder and Tarski and their applications. Key topics covered include Sharkovsky’s theorem on periodic points, Thron’s results on the convergence of certain real iterates, Shield’s common fixed theorem for a commuting family of analytic functions and Bergweiler’s existence theorem on fixed points of the composition of certain meromorphic functions with transcendental entire functions. Generalizations of Tarski’s theorem by Merrifield and Stein and Abian’s proof of the equivalence of Bourbaki–Zermelo fixed-point theorem and the Axiom of Choice are described in the setting of posets. A detailed treatment of Ward’s theory of partially ordered topological spaces culminates in Sherrer fixed-point theorem. It elaborates Manka’s proof of the fixed-point property of arcwise connected hereditarily unicoherent continua, based on the connection he observed between set theory and fixed-point theory via a certain partial order. Contraction principle is provided with two proofs: one due to Palais and the other due to Barranga. Applications of the contraction principle include the proofs of algebraic Weierstrass preparation theorem, a Cauchy–Kowalevsky theorem for partial differential equations and the central limit theorem. It also provides a proof of the converse of the contraction principle due to Jachymski, a proof of fixed point theorem for continuous generalized contractions, a proof of Browder–Gohde–Kirk fixed point theorem, a proof of Stalling's generalization of Brouwer's theorem, examine Caristi's fixed point theorem, and highlights Kakutani's theorems on common fixed points and their applications.
This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the field’s most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.