Download Free Fixed Point Theorems And Applications Book in PDF and EPUB Free Download. You can read online Fixed Point Theorems And Applications and write the review.

This book addresses fixed point theory, a fascinating and far-reaching field with applications in several areas of mathematics. The content is divided into two main parts. The first, which is more theoretical, develops the main abstract theorems on the existence and uniqueness of fixed points of maps. In turn, the second part focuses on applications, covering a large variety of significant results ranging from ordinary differential equations in Banach spaces, to partial differential equations, operator theory, functional analysis, measure theory, and game theory. A final section containing 50 problems, many of which include helpful hints, rounds out the coverage. Intended for Master’s and PhD students in Mathematics or, more generally, mathematically oriented subjects, the book is designed to be largely self-contained, although some mathematical background is needed: readers should be familiar with measure theory, Banach and Hilbert spaces, locally convex topological vector spaces and, in general, with linear functional analysis.
This book explores fixed point theorems and its uses in economics, co-operative and noncooperative games.
This is the only book that deals comprehensively with fixed point theorems overall of mathematics. Their importance is due, as the book demonstrates, to their wide applicability. Beyond the first chapter, each of the other seven can be read independently of the others so the reader has much flexibility to follow his/her own interests. The book is written for graduate students and professional mathematicians and could be of interest to physicists, economists and engineers.
In recent years, the fixed point theory of Lipschitzian-type mappings has rapidly grown into an important field of study in both pure and applied mathematics. It has become one of the most essential tools in nonlinear functional analysis. This self-contained book provides the first systematic presentation of Lipschitzian-type mappings in metric and Banach spaces. The first chapter covers some basic properties of metric and Banach spaces. Geometric considerations of underlying spaces play a prominent role in developing and understanding the theory. The next two chapters provide background in terms of convexity, smoothness and geometric coefficients of Banach spaces including duality mappings and metric projection mappings. This is followed by results on existence of fixed points, approximation of fixed points by iterative methods and strong convergence theorems. The final chapter explores several applicable problems arising in related fields. This book can be used as a textbook and as a reference for graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations by iteration theory, convexity and related geometric topics, and best approximation theory.
This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.
This book provides a primary resource in basic fixed-point theorems due to Banach, Brouwer, Schauder and Tarski and their applications. Key topics covered include Sharkovsky’s theorem on periodic points, Thron’s results on the convergence of certain real iterates, Shield’s common fixed theorem for a commuting family of analytic functions and Bergweiler’s existence theorem on fixed points of the composition of certain meromorphic functions with transcendental entire functions. Generalizations of Tarski’s theorem by Merrifield and Stein and Abian’s proof of the equivalence of Bourbaki–Zermelo fixed-point theorem and the Axiom of Choice are described in the setting of posets. A detailed treatment of Ward’s theory of partially ordered topological spaces culminates in Sherrer fixed-point theorem. It elaborates Manka’s proof of the fixed-point property of arcwise connected hereditarily unicoherent continua, based on the connection he observed between set theory and fixed-point theory via a certain partial order. Contraction principle is provided with two proofs: one due to Palais and the other due to Barranga. Applications of the contraction principle include the proofs of algebraic Weierstrass preparation theorem, a Cauchy–Kowalevsky theorem for partial differential equations and the central limit theorem. It also provides a proof of the converse of the contraction principle due to Jachymski, a proof of fixed point theorem for continuous generalized contractions, a proof of Browder–Gohde–Kirk fixed point theorem, a proof of Stalling's generalization of Brouwer's theorem, examine Caristi's fixed point theorem, and highlights Kakutani's theorems on common fixed points and their applications.
This book collects chapters on contemporary topics on metric fixed point theory and its applications in science, engineering, fractals, and behavioral sciences. Chapters contributed by renowned researchers from across the world, this book includes several useful tools and techniques for the development of skills and expertise in the area. The book presents the study of common fixed points in a generalized metric space and fixed point results with applications in various modular metric spaces. New insight into parametric metric spaces as well as study of variational inequalities and variational control problems have been included.
Metric Fixed Point Theory has proved a flourishing area of research for many mathematicians. This book aims to offer the mathematical community an accessible, self-contained account which can be used as an introduction to the subject and its development. It will be understandable to a wide audience, including non-specialists, and provide a source of examples, references and new approaches for those currently working in the subject.
The theory of Fixed Points is one of the most powerful tools of modern mathematics. This book contains a clear, detailed and well-organized presentation of the major results, together with an entertaining set of historical notes and an extensive bibliography describing further developments and applications. From the reviews: "I recommend this excellent volume on fixed point theory to anyone interested in this core subject of nonlinear analysis." --MATHEMATICAL REVIEWS
"Fixed-point theory initially emerged in the article demonstrating existence of solutions of differential equations, which appeared in the second quarter of the 18th century (Joseph Liouville, 1837). Later on, this technique was improved as a method of successive approximations (Charles Emile Picard, 1890) which was extracted and abstracted as a fixed-point theorem in the framework of complete normed space (Stefan Banach, 1922). It ensures presence as well as uniqueness of a fixed point, gives an approximate technique to really locate the fixed point and the a priori and a posteriori estimates for the rate of convergence. It is an essential device in the theory of metric spaces. Subsequently, it is stated that fixed-point theory is initiated by Stefan Banach. Fixed-point theorems give adequate conditions under which there exists a fixed point for a given function and enable us to ensure the existence of a solution of the original problem. In an extensive variety of scientific issues, beginning from different branches of mathematics, the existence of a solution is comparable to the existence of a fixed point for a suitable mapping. The book "Fixed Point Theory & its Applications to Real World Problems" is an endeavour to present results in fixed point theory which are extensions, improvements and generalizations of classical and recent results in this area and touches on distinct research directions within the metric fixed-point theory. It provides new openings for further exploration and makes for an easily accessible source of knowledge. This book is apposite for young researchers who want to pursue their research in fixed-point theory and is the latest in the field, giving new techniques for the existence of a superior fixed point, a fixed point, a near fixed point, a fixed circle, a near fixed interval circle, a fixed disc, a near fixed interval disc, a coincidence point, a common fixed point, a coupled common fixed point, amiable fixed sets, strong coupled fixed points and so on, utilizing minimal conditions. It offers novel applications besides traditional applications which are applicable to real world problems. The book is self-contained and unified which will serve as a reference book to researchers who are in search of novel ideas. It will be a valued addition to the library"--