Download Free First Measurement Of Neutrino And Antineutrino Oscillation At T2k Book in PDF and EPUB Free Download. You can read online First Measurement Of Neutrino And Antineutrino Oscillation At T2k and write the review.

This thesis reports the measurement of muon neutrino and antineutrino disappearance and electron neutrino and antineutrino appearance in a muon neutrino and antineutrino beam using the T2K experiment. It describes a result in neutrino physics that is a pioneering indication of charge-parity (CP) violation in neutrino oscillation; the first to be obtained from a single experiment. Neutrinos are some of the most abundant—but elusive—particles in the universe, and may provide a promising place to look for a potential solution to the puzzle of matter/antimatter imbalance in the observable universe. It has been firmly established that neutrinos can change flavour (or ‘oscillate’), as recognised by the 2015 Nobel Prize. The theory of neutrino oscillation allows for neutrinos and antineutrinos to oscillate differently (CP violation), and may provide insights into why our universe is matter-dominated. Bayesian statistical methods, including the Markov Chain Monte Carlo fitting technique, are used to simultaneously optimise several hundred systematic parameters describing detector, beam, and neutrino interaction uncertainties as well as the six oscillation parameters.
This thesis reports the calculation of neutrino production for the T2K experiment; the most precise a priori estimate of neutrino production that has been achieved for any accelerator-based neutrino oscillation experiment to date. The production of intense neutrino beams at accelerator facilities requires exceptional understanding of chains of particle interactions initiated within extended targets. In this thesis, the calculation of neutrino production for T2K has been improved by using measurements of particle production from a T2K replica target, taken by the NA61/SHINE experiment. This enabled the reduction of the neutrino production uncertainty to the level of 5%, which will have a significant impact on neutrino oscillation and interaction measurements by T2K in the coming years. In addition to presenting the revised flux calculation methodology in an accessible format, this thesis also reports a joint T2K measurement of muon neutrino and antineutrino disappearance, and the accompanying electron neutrino and antineutrino appearance, with the updated beam constraint.
Reviews the current state of knowledge of neutrino masses and the related question of neutrino oscillations. After an overview of the theory of neutrino masses and mixings, detailed accounts are given of the laboratory limits on neutrino masses, astrophysical and cosmological constraints on those masses, experimental results on neutrino oscillations, the theoretical interpretation of those results, and theoretical models of neutrino masses and mixings. The book concludes with an examination of the potential of long-baseline experiments. This is an essential reference text for workers in elementary-particle physics, nuclear physics, and astrophysics.
The neutrino is the most fascinating elementary particle due to its elusive nature and outstanding properties that have attracted the interest of generations of physicists since 1930, when it was first postulated by Wolfgang Pauli as a 'desperate remedy' to explain the apparent energy violation in the beta decay. Many fundamental discoveries in particle physics had the neutrino involved in one way or another. To date, neutrino physics is still one of the hottest topics of modern particle physics. Key experiments and significant theoretical developments have contributed in building up what we can call now the Standard Model of Neutrino Physics.The aim of the book is to provide graduate students and young researchers a comprehensive tutorial in modern neutrino physics, specially tailored with emphasis on the educational aspects. It provides an overview of the basics and of recent achievements in the field, from both experimental and theoretical points of view.
The study of neutrinos and their interaction with matter has made many important contributions to our present knowledge of physics. This advanced text introduces neutrino physics and presents a theoretical framework for describing relativistic particles. It gives a pedagogical description of the neutrino, its properties, the standard model of electroweak interactions, and neutrino scattering from leptons and nucleons. Focusing on the role of nuclear effects, the discussion extends to various processes of quasielastic, inelastic, and deep inelastic scattering from nucleons and nuclei. Neutrino sources, detection and oscillation, along with the role of neutrinos in astrophysics and motivation for the need of physics beyond the standard model are discussed in detail. This topical book will stimulate new ideas and avenues for research, and will form a valuable resource for advanced students and researchers working in the field of neutrino physics.
Small neutrino masses are the first signs of new physics beyond the Standard Model of particle physics. Since the first edition of this textbook appeared in 2010, the Nobel Prize has been awarded "for the discovery of neutrino oscillations, which shows that neutrinos have mass". The measurement of the small neutrino mixing angle $\theta_{13}$ in 2012, launched the precision stage of the investigation of neutrino oscillations. This measurement now allows such fundamental problems as the three-neutrino mass spectrum - is it normal or inverted? – and the $CP$ violation in the lepton sector to be tackled. In order to understand the origin of small neutrino masses, it remains crucial to reveal the nature of neutrinos with definite masses: are they Dirac neutrinos possessing a conserved lepton number, which distinguishes neutrinos and antineutrinos, or are they Majorana neutrinos with identical neutrinos and antineutrinos? Experiments searching for the neutrinoless double beta decay are presently under way to answer this fundamental question. The second edition of this book comprehensively discusses all these important recent developments. Based on numerous lectures given by the author, a pioneer of modern neutrino physics (recipient of the Bruno Pontecorvo Prize 2002), at different institutions and schools, it offers a gentle yet detailed introduction to the physics of massive and mixed neutrinos that prepares graduate students and young researchers entering the field for the exciting years ahead in neutrino physics.
This book is based on the author's work in the T2K long-baseline neutrino oscillation experiment, in which neutrinos are generated by a proton beam and are detected by near and far neutrino detectors. In order to achieve the precise measurement of the neutrino oscillation, an accurate understanding of the neutrino beam and the neutrino interaction is essential. Thus, the author measured the neutrino beam properties and the neutrino interaction cross sections using a near neutrino detector called INGRID and promoted a better understanding of them. Then, the author performed a neutrino oscillation analysis using the neutrino beam and neutrino interaction models verified by the INGRID measurements. As a result, some values of the neutrino CP phase are disfavored at the 90% confidence level. If the measurement precision is further improved, we may be able to discover the finite CP phase which involves the CP violation. Thus, this result is an important step towards the discovery of CP violation in the lepton sector, which may be the key to understanding the origin of the matter–antimatter asymmetry in the universe.
This book presents a major step forward in experimentally understanding the behavior of muon neutrinos and antineutrinos. Apart from providing the world’s first measurement of these interactions in a mostly unexplored energy region, the data presented advances the neutrino community’s preparedness to search for an asymmetry between matter and anti-matter that may very well provide the physical mechanism for the existence of our universe. The details of these measurements are preceded by brief summaries of the history of the neutrino, the phenomenon of neutrino oscillations, and a description of their interactions. Also provided are details of the experimental setup for the measurements and the muon antineutrino cross-section measurement which motivates the need for dedicated in situ background constraints. The world’s first measurement of the neutrino component of an antineutrino beam using a non-magnetized detector, as well as other crucial background constraints, are also presented in the book. By exploiting correlated systematic uncertainties, combined measurements of the muon neutrino and antineutrino cross sections described in the book maximize the precision of the extracted information from both results.
This book is dedicated to Lev Okun, who passed away in November 2015. He was a true pioneer in probing fundamental dynamics.The book has two objectives. First is to showcase Okun's impact for decades since 1963, when he published his remarkable book Weak Interaction of Elementary Particles. Second is to present the current progress of our scientific community in the studies of our Universe. New directions and possible future developments are discussed, often using the past as a guide. The authors mostly focus on CP asymmetries in the transitions of hadrons and leptons, but they also discuss their rare decays, and talk about axions and supersymmetry, and possible connections with dark matter, extra dimensions, baryogenesis and multiverse.This book is suitable for readers who know quantum mechanics and quantum field theories in general.
The volume of these proceedings is devoted to a wide variety of items, both in theory and experiment, of particle physics such as neutrino and astroparticle physics, tests of standard model and beyond, hadron physics, gravitation and cosmology, physics at the present and future accelerators.