Download Free Fire Resistance Of Concrete Columns Book in PDF and EPUB Free Download. You can read online Fire Resistance Of Concrete Columns and write the review.

Provides a basis for developing new standards to calculate the fire resistance of structural members, mostly in buildings. Considers building codes and techniques of fire protection, the behavior of fire in enclosed spaces and its effect on various building materials, and methods for calculating fir
In spite of the increasing use and demand for lightweight aggregate concrete (LWAC), there is still a lack of adequate explanations to understand the mechanisms responsible for the strength and durability properties of LWAC. This book is written to give an overall picture of LWAC, from the historical background, aggregate production, proportioning and production of concrete, to applications in structures. Physical properties and chemical durability are described in detail. The physical properties include density, strength, shrinkage, and elasticity. Chemical durability includes resistance to acids, chloride ingress, carbonation, and freeze-thaw resistance. Fire resistance is also included, which is seldom considered, but is a very important aspect of the safety of the structure. Microstructure development and its relation to the durability properties of LWAC generally are not highlighted in the literature. The development of bonds, the microstructure with different binder systems, and different types of lightweight aggregates are explained. They show how lightweight aggregate concrete differs from normal weight concrete. The chapters on chloride ingress and freeze-thaw resistance are detailed because of the use of LWAC in offshore construction. The economical aspects of using LWAC are also reviewed. Emphasis is placed on the fact that although the cost of LWAC is high, the total cost of construction has to be considered, including the cost of transport, reinforcement, etc. When these are considered then LWAC becomes cheaper and attractive. The life cycle cost of the concrete is another consideration for calculating long-term savings on maintenance costs.
The purpose of the Guideline on Fire Ratings of Archaic Materials and Assemblies is to assist architects, engineers, preservationists, and code officials in evaluating the fire safety of older buildings by providing documentation on the fire-related performance of a wide variety of archaic building materials and assemblies, and, for those cases where documentation cannot be found, by providing ways to evaluate general classes of archaic materials and assemblies.
Brannigan’s Building Construction for the Fire Service, Fourth Edition is a must read for fire fighters, prospective fire fighters, and fire science students. This edition continues the Brannigan tradition of using plain language to describe technical information about different building types and their unique hazards. This text ensures that critical fire fighting information is easy-to-understand and gives valuable experience to fire fighters before stepping onto the fireground. The first edition of Building Construction for the Fire Service was published in 1971. Frank Brannigan was compelled to write the most comprehensive building construction text for the fire service so that he could save fire fighters’ lives. His passion for detail and extensive practical experience helped him to develop the most popular text on the market. His motto of: “Know your buildings,” informs every aspect of this new edition of the text. Listen to a Podcast with Brannigan's Building Construction for the Fire Service, Fourth Edition co-author Glenn Corbett to learn more about this training program! Glenn discusses his relationship with the late Frank Brannigan, the dangers of heavy construction timber, occupancy specific hazards, and other areas of emphasis within the Fourth Edition. To listen now, visit: http://d2jw81rkebrcvk.cloudfront.net/assets.multimedia/audio/Building_Construction.mp3.
This SpringerBrief equips readers to develop defensible fire safety designs for a range of concrete structures. It identifies current gaps in the research and provides a more complete understanding of the structural and thermal response of contemporary Post-tensioned (PT) concrete structures to fire. The brief includes chapters on contemporary construction using PT concrete, previous structural fire test research programs, recent research programs, real fire case studies, and current research needs. It explores the progression of PT concrete structures, looking at the sustainability and aesthetic benefits, the ongoing development of stronger concretes, and best practice guidance for improving safety in the event of fire. Designed for practitioners and researchers in fire engineering, this brief is a valuable tool for those studying the impact of fire on concrete, fire safety designs, and building safety optimization. Advanced-level students in civil engineering will also find the content useful.
Structural Design for Fire Safety, 2nd edition Andrew H. Buchanan, University of Canterbury, New Zealand Anthony K. Abu, University of Canterbury, New Zealand A practical and informative guide to structural fire engineering This book presents a comprehensive overview of structural fire engineering. An update on the first edition, the book describes new developments in the past ten years, including advanced calculation methods and computer programs. Further additions include: calculation methods for membrane action in floor slabs exposed to fires; a chapter on composite steel-concrete construction; and case studies of structural collapses. The book begins with an introduction to fire safety in buildings, from fire growth and development to the devastating effects of severe fires on large building structures. Methods of calculating fire severity and fire resistance are then described in detail, together with both simple and advanced methods for assessing and designing for structural fire safety in buildings constructed from structural steel, reinforced concrete, or structural timber. Structural Design for Fire Safety, 2nd edition bridges the information gap between fire safety engineers, structural engineers and building officials, and it will be useful for many others including architects, code writers, building designers, and firefighters. Key features: • Updated references to current research, as well as new end-of-chapter questions and worked examples. •Authors experienced in teaching, researching, and applying structural fire engineering in real buildings. • A focus on basic principles rather than specific building code requirements, for an international audience. An essential guide for structural engineers who wish to improve their understanding of buildings exposed to severe fires and an ideal textbook for introductory or advanced courses in structural fire engineering.
Concrete-filled stainless steel tubular (CFSST) columns are increasingly used in modern composite construction due to their high strength, high ductility, high corrosion resistance, high durability and aesthetics and ease of maintenance. Thin-walled CFSST columns are characterized by the different strain-hardening behavior of stainless steel in tension and in compression, local buckling of stainless steel tubes and concrete confinement. Design codes and numerical models often overestimate or underestimate the ultimate strengths of CFSST columns. This book presents accurate and efficient computational models for the nonlinear inelastic analysis and design of CFSST short and slender columns under axial load and biaxial bending. The effects of different strain-hardening characteristics of stainless steel in tension and in compression, progressive local and post-local buckling of stainless steel tubes and concrete confinement are taken into account in the computational models. The numerical models simulate the axial load-strain behavior, moment-curvature curves, axial load-deflection responses and axial load-moment strength interaction diagrams of CFSST columns. The book describes the mathematical formulations, computational procedures and model verifications for circular and rectangular CFSST short and slender columns. The behavior of CFSST columns under various loading conditions is demonstrated by numerous numerical examples. This book is written for practising structural and civil engineers, academic researchers and graduate students in civil engineering who are interested in the latest computational techniques and design methods for CFSST columns.
This book highlights the key role of green infrastructure (GI) in providing natural and ecosystem solutions, helping alleviate many of the environmental, social, and economic problems caused by rapid urbanization. The book gathers the emerging technologies and applications in various disciplines involving geotechnics, civil engineering, and structures, which are presented in numerous high-quality papers by worldwide researchers, practitioners, policymakers, and entrepreneurs at the 6th CIGOS event, 2021. Moreover, by sharing knowledge and experiences around emerging GI technologies and policy issues, the book aims at encouraging adoption of GI technologies as well as building capacity for implementing GI practices at all scales. This book is useful for researchers and professionals in designing, building, and managing sustainable buildings and infrastructure.