Download Free Finitely Generated Abelian Groups And Similarity Of Matrices Over A Field Book in PDF and EPUB Free Download. You can read online Finitely Generated Abelian Groups And Similarity Of Matrices Over A Field and write the review.

At first sight, finitely generated abelian groups and canonical forms of matrices appear to have little in common. However, reduction to Smith normal form, named after its originator H.J.S.Smith in 1861, is a matrix version of the Euclidean algorithm and is exactly what the theory requires in both cases. Starting with matrices over the integers, Part 1 of this book provides a measured introduction to such groups: two finitely generated abelian groups are isomorphic if and only if their invariant factor sequences are identical. The analogous theory of matrix similarity over a field is then developed in Part 2 starting with matrices having polynomial entries: two matrices over a field are similar if and only if their rational canonical forms are equal. Under certain conditions each matrix is similar to a diagonal or nearly diagonal matrix, namely its Jordan form. The reader is assumed to be familiar with the elementary properties of rings and fields. Also a knowledge of abstract linear algebra including vector spaces, linear mappings, matrices, bases and dimension is essential, although much of the theory is covered in the text but from a more general standpoint: the role of vector spaces is widened to modules over commutative rings. Based on a lecture course taught by the author for nearly thirty years, the book emphasises algorithmic techniques and features numerous worked examples and exercises with solutions. The early chapters form an ideal second course in algebra for second and third year undergraduates. The later chapters, which cover closely related topics, e.g. field extensions, endomorphism rings, automorphism groups, and variants of the canonical forms, will appeal to more advanced students. The book is a bridge between linear and abstract algebra.
This book provides an introduction to the decomposition of finitely generated abelian groups and canonical forms of matrices, and explores the analogous theory of matrix similarity over a field. Includes numerous worked examples and exercises with solutions.
This book constitutes the refereed proceedings of the 7th International Conference on Language and Automata Theory and Applications, LATA 2013, held in Bilbao, Spain in April 2013. The 45 revised full papers presented together with 5 invited talks were carefully reviewed and selected from 97 initial submissions. The volume features contributions from both classical theory fields and application areas (bioinformatics, systems biology, language technology, artificial intelligence, etc.). Among the topics covered are algebraic language theory; algorithms for semi-structured data mining; algorithms on automata and words; automata and logic; automata for system analysis and program verification; automata, concurrency and Petri nets; automatic structures; cellular automata; combinatorics on words; computability; computational complexity; computational linguistics; data and image compression; decidability questions on words and languages; descriptional complexity; DNA and other models of bio-inspired computing; document engineering; foundations of finite state technology; foundations of XML; fuzzy and rough languages; grammars (Chomsky hierarchy, contextual, multidimensional, unification, categorial, etc.); grammars and automata architectures; grammatical inference and algorithmic learning; graphs and graph transformation; language varieties and semigroups; language-based cryptography; language-theoretic foundations of artificial intelligence and artificial life; parallel and regulated rewriting; parsing; pattern recognition; patterns and codes; power series; quantum, chemical and optical computing; semantics; string and combinatorial issues in computational biology and bioinformatics; string processing algorithms; symbolic dynamics; symbolic neural networks; term rewriting; transducers; trees, tree languages and tree automata; weighted automata.
The papers in this volume are the result of a workshop held in January 1989 at the Mathematical Sciences Research Institute. Topics covered include decision problems, finitely presented simple groups, combinatorial geometry and homology, and automatic groups and related topics.
Accosiative rings and algebras are very interesting algebraic structures. In a strict sense, the theory of algebras (in particular, noncommutative algebras) originated fromasingleexample,namelythequaternions,createdbySirWilliamR.Hamilton in1843. Thiswasthe?rstexampleofanoncommutativeā€¯numbersystemā€¯. During thenextfortyyearsmathematiciansintroducedotherexamplesofnoncommutative algebras, began to bring some order into them and to single out certain types of algebras for special attention. Thus, low-dimensional algebras, division algebras, and commutative algebras, were classi?ed and characterized. The ?rst complete results in the structure theory of associative algebras over the real and complex ?elds were obtained by T.Molien, E.Cartan and G.Frobenius. Modern ring theory began when J.H.Wedderburn proved his celebrated cl- si?cation theorem for ?nite dimensional semisimple algebras over arbitrary ?elds. Twenty years later, E.Artin proved a structure theorem for rings satisfying both the ascending and descending chain condition which generalized Wedderburn structure theorem. The Wedderburn-Artin theorem has since become a corn- stone of noncommutative ring theory. The purpose of this book is to introduce the subject of the structure theory of associative rings. This book is addressed to a reader who wishes to learn this topic from the beginning to research level. We have tried to write a self-contained book which is intended to be a modern textbook on the structure theory of associative rings and related structures and will be accessible for independent study.
The theme of this book is an exposition of connections between representations of finite partially ordered sets and abelian groups. Emphasis is placed throughout on classification, a description of the objects up to isomorphism, and computation of representation type, a measure of when classification is feasible. David M. Arnold is the Ralph and Jean Storm Professor of Mathematics at Baylor University. He is the author of "Finite Rank Torsion Free Abelian Groups and Rings" published in the Springer-Verlag Lecture Notes in Mathematics series, a co-editor for two volumes of conference proceedings, and the author of numerous articles in mathematical research journals.
"This book is designed as a text for the first year of graduate algebra, but it can also serve as a reference since it contains more advanced topics as well. This second edition has a different organization than the first. It begins with a discussion of the cubic and quartic equations, which leads into permutations, group theory, and Galois theory (for finite extensions; infinite Galois theory is discussed later in the book). The study of groups continues with finite abelian groups (finitely generated groups are discussed later, in the context of module theory), Sylow theorems, simplicity of projective unimodular groups, free groups and presentations, and the Nielsen-Schreier theorem (subgroups of free groups are free). The study of commutative rings continues with prime and maximal ideals, unique factorization, noetherian rings, Zorn's lemma and applications, varieties, and Gr'obner bases. Next, noncommutative rings and modules are discussed, treating tensor product, projective, injective, and flat modules, categories, functors, and natural transformations, categorical constructions (including direct and inverse limits), and adjoint functors. Then follow group representations: Wedderburn-Artin theorems, character theory, theorems of Burnside and Frobenius, division rings, Brauer groups, and abelian categories. Advanced linear algebra treats canonical forms for matrices and the structure of modules over PIDs, followed by multilinear algebra. Homology is introduced, first for simplicial complexes, then as derived functors, with applications to Ext, Tor, and cohomology of groups, crossed products, and an introduction to algebraic K-theory. Finally, the author treats localization, Dedekind rings and algebraic number theory, and homological dimensions. The book ends with the proof that regular local rings have unique factorization."--Publisher's description.
Polycyclic groups are built from cyclic groups in a specific way. They arise in many contexts within group theory itself but also more generally in algebra, for example in the theory of Noetherian rings. The first half of this book develops the standard group theoretic techniques for studying polycyclic groups and the basic properties of these groups. The second half then focuses specifically on the ring theoretic properties of polycyclic groups and their applications, often to purely group theoretic situations. The book is intended to be a study manual for graduate students and researchers coming into contact with polycyclic groups, where the main lines of the subject can be learned from scratch. Thus it has been kept short and readable with a view that it can be read and worked through from cover to cover. At the end of each topic covered there is a description without proofs, but with full references, of further developments in the area. An extensive bibliography then concludes the book.
During his lifetime, L. K. Hua played a leading role in and exerted a great influence upon the development in China of modern mathematics, both pure and applied. His mathematical career began in 1931 at Tsinghua University where he continued as a professor for many years. Hua made many significant contributions to number theory, algebra, geometry, complex analysis, numerical analysis, and operations research. In particular, he initiated the study of classical groups in China and developed new matrix methods which, as applied by him as well as his followers, were instrumental in the successful attack of many problems. To honor his memory, a joint China-U.S. conference on Classical Groups and Related Topics was held at Tsinghua University in Beijing in May 1987. This volume represents the proceedings of that conference and contains both survey articles and research papers focusing on classical groups and closely related topics.