Download Free Finite Horizon H Infinity And Related Control Problems Book in PDF and EPUB Free Download. You can read online Finite Horizon H Infinity And Related Control Problems and write the review.

One of the major concentrated activities of the past decade in control theory has been the development of the so-called "HOO-optimal control theory," which addresses the issue of worst-case controller design for linear plants subject to unknown additive disturbances, including problems of disturbance attenuation, model matching, and tracking. The mathematical OO symbol "H " stands for the Hardy space of all complex-valued functions of a complex variable, which are analytic and bounded in the open right half complex plane. For a linear (continuous-time, time-invariant) plant, oo the H norm of the transfer matrix is the maximum of its largest singular value over all frequencies. OO Controller design problems where the H norm plays an important role were initially formulated by George Zames in the early 1980's, in the context of sensitivity reduction in linear plants, with the design problem posed as a mathematical optimization problem using an (HOO) operator norm. Thus formulated originally in the frequency domain, the main tools used during the early phases of research on this class of problems have been operator and approximation theory, spectral factorization, and (Youla) parametrization, leading initially to rather complicated (high-dimensional) OO optimal or near-optimal (under the H norm) controllers.
This book is devoted to one of the fastest developing fields in modern control theory - the so-called H-infinity optimal control theory. Based mostly on recent work by the authors, the book is written on a good mathematical level. Many results in it are original.
This book is devoted to one of the fastest developing fields in modern control theory - the so-called H-infinity optimal control theory. The book can be used for a second or third year graduate level course in the subject, and researchers working in the area will find the book useful as a standard reference. Based mostly on recent work of the authors, the book is written on a good mathematical level. Many results in it are original, interesting, and inspirational. The topic is central to modern control and hence this definitive book is highly recommended to anyone who wishes to catch up with important theoretical developments in applied mathematics and control.
This monograph presents a unified mathematical framework for a wide range of problems in estimation and control. The authors discuss the two most commonly used methodologies: the stochastic H² approach and the deterministic (worst-case) H [infinity] approach. Despite the fundamental differences in the philosophies of these two approaches, the authors have discovered that, if indefinite metric spaces are considered, they can be treated in the same way and are essentially the same. The benefits and consequences of this unification are pursued in detail, with discussions of how to generalize well-known results from H² theory to H [infinity] setting, as well as new results and insight, the development of new algorithms, and applications to adaptive signal processing. The authors deliberately have placed primary emphasis on estimation problems which enable one to solve all the relevant control problems in detail. They also deal mostly with discrete-time systems, since these are the ones most important in current applications.
This book features high-quality research papers presented at Second Doctoral Symposium on Computational Intelligence (DoSCI-2021), organized by Institute of Engineering and Technology (IET), AKTU, Lucknow, India, on 6 March 2021. This book discusses the topics such as computational intelligence, artificial intelligence, deep learning, evolutionary algorithms, swarm intelligence, fuzzy sets and vague sets, rough set theoretic approaches, quantum-inspired computational intelligence, hybrid computational intelligence, machine learning, computer vision, soft computing, distributed computing, parallel and grid computing, cloud computing, high-performance computing, biomedical computing, decision support and decision making.
The authors present a study of the H-infinity control problem and related topics for descriptor systems, described by a set of nonlinear differential-algebraic equations. They derive necessary and sufficient conditions for the existence of a controller solving the standard nonlinear H-infinity control problem considering both state and output feedback. One such condition for the output feedback control problem to be solvable is obtained in terms of Hamilton–Jacobi inequalities and a weak coupling condition; a parameterization of output feedback controllers solving the problem is also provided. All of these results are then specialized to the linear case. The derivation of state-space formulae for all controllers solving the standard H-infinity control problem for descriptor systems is proposed. Among other important topics covered are balanced realization, reduced-order controller design and mixed H2/H-infinity control. "H-infinity Control for Nonlinear Descriptor Systems" provides a comprehensive introduction and easy access to advanced topics.
This book contains the topics of artificial intelligence and deep learning that do have much application in real-life problems. The concept of uncertainty has long been used in applied science, especially decision making and a logical decision must be made in the field of uncertainty or in the real-life environment that is formed and combined with vague concepts and data. The chapters of this book are connected to the new concepts and aspects of decision making with uncertainty. Besides, other chapters are involved with the concept of data mining and decision making under uncertain computations.
Issues in Systems Engineering / 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Systems and Control Engineering. The editors have built Issues in Systems Engineering: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Systems and Control Engineering in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Systems Engineering: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
These Proceedings contain the papers presented at the 1stAsian Pacific Congress on Computational Mechanics held in Sydney, on 20-23 November 2001. The theme of the first Congress of the Asian-Pacific Association for Computational Mechanics in the new millennium is New Frontiers for the New Millennium. The papers cover such new frontiers as micromechanics, contact mechanics, environmental geomechanics, chemo-thermo-mechanics, inverse techniques, homogenization, meshless methods, smart materials/smart structures and graphic visualization, besides the general topics related to the application of finite element and boundary element methods in structural mechanics, fluid mechanics, geomechanics and biomechanics.