Download Free Financial Software Engineering Book in PDF and EPUB Free Download. You can read online Financial Software Engineering and write the review.

In this textbook the authors introduce the important concepts of the financial software domain, and motivate the use of an agile software engineering approach for the development of financial software. They describe the role of software in defining financial models and in computing results from these models. Practical examples from bond pricing, yield curve estimation, share price analysis and valuation of derivative securities are given to illustrate the process of financial software engineering. Financial Software Engineering also includes a number of case studies based on typical financial engineering problems: *Internal rate of return calculation for bonds * Macaulay duration calculation for bonds * Bootstrapping of interest rates * Estimation of share price volatility * Technical analysis of share prices * Re-engineering Matlab to C# * Yield curve estimation * Derivative security pricing * Risk analysis of CDOs The book is suitable for undergraduate and postgraduate study, and for practitioners who wish to extend their knowledge of software engineering techniques for financial applications
In this textbook the authors introduce the important concepts of the financial software domain, and motivate the use of an agile software engineering approach for the development of financial software. They describe the role of software in defining financial models and in computing results from these models. Practical examples from bond pricing, yield curve estimation, share price analysis and valuation of derivative securities are given to illustrate the process of financial software engineering. Financial Software Engineering also includes a number of case studies based on typical financial engineering problems: *Internal rate of return calculation for bonds * Macaulay duration calculation for bonds * Bootstrapping of interest rates * Estimation of share price volatility * Technical analysis of share prices * Re-engineering Matlab to C# * Yield curve estimation * Derivative security pricing * Risk analysis of CDOs The book is suitable for undergraduate and postgraduate study, and for practitioners who wish to extend their knowledge of software engineering techniques for financial applications
In this textbook the authors introduce the important concepts of the financial software domain, and motivate the use of an agile software engineering approach for the development of financial software. They describe the role of software in defining financial models and in computing results from these models. Practical examples from bond pricing, yield curve estimation, share price analysis and valuation of derivative securities are given to illustrate the process of financial software engineering. Financial Software Engineering also includes a number of case studies based on typical financial engineering problems: * Internal rate of return calculation for bonds * Macaulay duration calculation for bonds * Bootstrapping of interest rates * Estimation of share price volatility * Technical analysis of share prices * Re-engineering Matlab to C# * Yield curve estimation * Derivative security pricing * Risk analysis of CDOs The book is suitable for undergraduate and postgraduate study, and for practitioners who wish to extend their knowledge of software engineering techniques for financial applications.
Principles of Financial Engineering, Second Edition, is a highly acclaimed text on the fast-paced and complex subject of financial engineering. This updated edition describes the "engineering" elements of financial engineering instead of the mathematics underlying it. It shows you how to use financial tools to accomplish a goal rather than describing the tools themselves. It lays emphasis on the engineering aspects of derivatives (how to create them) rather than their pricing (how they act) in relation to other instruments, the financial markets, and financial market practices. This volume explains ways to create financial tools and how the tools work together to achieve specific goals. Applications are illustrated using real-world examples. It presents three new chapters on financial engineering in topics ranging from commodity markets to financial engineering applications in hedge fund strategies, correlation swaps, structural models of default, capital structure arbitrage, contingent convertibles, and how to incorporate counterparty risk into derivatives pricing. Poised midway between intuition, actual events, and financial mathematics, this book can be used to solve problems in risk management, taxation, regulation, and above all, pricing. This latest edition of Principles of Financial Engineering is ideal for financial engineers, quantitative analysts in banks and investment houses, and other financial industry professionals. It is also highly recommended to graduate students in financial engineering and financial mathematics programs. - The Second Edition presents 5 new chapters on structured product engineering, credit markets and instruments, and principle protection techniques, among other topics - Additions, clarifications, and illustrations throughout the volume show these instruments at work instead of explaining how they should act - The Solutions Manual enhances the text by presenting additional cases and solutions to exercises
This text provides a thorough treatment of futures, 'plain vanilla' options and swaps as well as the use of exotic derivatives and interest rate options for speculation and hedging. Pricing of options using numerical methods such as lattices (BOPM), Mone Carlo simulation and finite difference methods, in additon to solutions using continuous time mathematics, are also covered. Real options theory and its use in investment appraisal and in valuing internet and biotechnology companies provide cutting edge practical applications. Practical risk management issues are examined in depth. Alternative models for calculating Value at Risk (market risk) and credit risk provide the throretical basis for a practical and timely overview of these areas of regulatory policy. This book is designed for courses in derivatives and risk management taken by specialist MBA, MSc Finance students or final year undergraduates, either as a stand-alone text or as a follow-on to Investments: Spot and Derivatives Markets by the same authors. The authors adopt a real-world emphasis throughout, and include features such as: * topic boxes, worked examples and learning objectives * Financial Times and Wall Street Journal newspaper extracts and analysis of real world cases * supporting web site including Lecturer's Resource Pack and Student Centre with interactive Excel and GAUSS software
This book describes the principles of model building in financial engineering. It explains those models as designs and working implementations for Java-based applications. The book provides software professionals with an accessible source of numerical methods or ready-to-use code for use in business applications. It is the first book to cover the topic of Java implementations for finance/investment applications and is written specifically to be accessible to software practitioners without prior accountancy/finance training. The book develops a series of packaged classes explained and designed to allow the financial engineer complete flexibility.
This book introduces the reader to the C++ programming language and how to use it to write applications in quantitative finance (QF) and related areas. No previous knowledge of C or C++ is required -- experience with VBA, Matlab or other programming language is sufficient. The book adopts an incremental approach; starting from basic principles then moving on to advanced complex techniques and then to real-life applications in financial engineering. There are five major parts in the book: C++ fundamentals and object-oriented thinking in QF Advanced object-oriented features such as inheritance and polymorphism Template programming and the Standard Template Library (STL) An introduction to GOF design patterns and their applications in QF Applications The kinds of applications include binomial and trinomial methods, Monte Carlo simulation, advanced trees, partial differential equations and finite difference methods. This book includes a companion website with all source code and many useful C++ classes that you can use in your own applications. Examples, test cases and applications are directly relevant to QF. This book is the perfect companion to Daniel J. Duffy’s book Financial Instrument Pricing using C++ (Wiley 2004, 0470855096 / 9780470021620)
In the Guide to the Software Engineering Body of Knowledge (SWEBOK(R) Guide), the IEEE Computer Society establishes a baseline for the body of knowledge for the field of software engineering, and the work supports the Society's responsibility to promote the advancement of both theory and practice in this field. It should be noted that the Guide does not purport to define the body of knowledge but rather to serve as a compendium and guide to the knowledge that has been developing and evolving over the past four decades. Now in Version 3.0, the Guide's 15 knowledge areas summarize generally accepted topics and list references for detailed information. The editors for Version 3.0 of the SWEBOK(R) Guide are Pierre Bourque (Ecole de technologie superieure (ETS), Universite du Quebec) and Richard E. (Dick) Fairley (Software and Systems Engineering Associates (S2EA)).
The pricing of derivative instruments has always been a highly complex and time-consuming activity. Advances in technology, however, have enabled much quicker and more accurate pricing through mathematical rather than analytical models. In this book, the author bridges the divide between finance and mathematics by applying this proven mathematical technique to the financial markets. Utilising practical examples, the author systematically describes the processes involved in a manner accessible to those without a deep understanding of mathematics. * Explains little understood techniques that will assist in the accurate more speedy pricing of options * Centres on the practical application of these useful techniques * Offers a detailed and comprehensive account of the methods involved and is the first to explore the application of these particular techniques to the financial markets
FINANCIAL ENGINEERING Financial engineering is poised for a great shift in the years ahead. Everyone from investors and borrowers to regulators and legislators will need to determine what works, what doesn't, and where to go from here. Financial Engineering—part of the Robert W. Kolb Series in Finance—has been designed to help you do just this. Comprised of contributed chapters by distinguished experts from industry and academia, this reliable resource will help you focus on established activities in the field, developing trends and changes, as well as areas of opportunity. Divided into five comprehensive parts, Financial Engineering begins with an informative overview of the discipline, chronicling its complete history and profiling potential career paths. From here, Part II quickly moves on to discuss the evolution of financial engineering in major markets—fixed income, foreign exchange, equities, commodities and credit—and offers important commentary on what has worked and what will change. Part III then examines a number of recent innovative applications of financial engineering that have made news over the past decade—such as the advent of securitized and structured products and highly quantitative trading strategies for both equities and fixed income. Thoughts on how risk management might be retooled to reflect what has been learned as a result of the recent financial crisis are also included. Part IV of the book is devoted entirely to case studies that present valuable lessons for active practitioners and academics. Several of the cases explore the risk that has instigated losses across multiple markets, including the global credit crisis. You'll gain in-depth insights from cases such as Countrywide, Société Générale, Barings, Long-Term Capital Management, the Florida Local Government Investment Pool, AIG, Merrill Lynch, and many more. The demand for specific and enterprise risk managers who can think outside the box will be substantial during this decade. Much of Part V presents new ways to be successful in an era that demands innovation on both sides of the balance sheet. Chapters that touch upon this essential topic include Musings About Hedging; Operational Risk; and The No-Arbitrage Condition in Financial Engineering: Its Use and Mis-Use. This book is complemented by a companion website that includes details from the editors' survey of financial engineering programs around the globe, along with a glossary of key terms from the book. This practical guide puts financial engineering in perspective, and will give you a better idea of how it can be effectively utilized in real- world situations.