Download Free Filaments Book in PDF and EPUB Free Download. You can read online Filaments and write the review.

In the second volume of his two-volume collection of essays from the 1980s to 2018, renowned Catholic theologian David Tracy gathers profiles of significant theologians, philosophers, and religious thinkers. These essays, he suggests, can be thought of in terms of Walt Whitman’s “filaments,” which are thrown out from the speaking self to others—ancient, medieval, modern, and contemporary—in order to be caught elsewhere. Filaments arranges its subjects in rough chronological order, from choices in ancient theology, such as Augustine, through the likes of William of St. Thierry in the medieval period and Martin Luther and Michelangelo in the early modern, and, finally, to modern and contemporary thinkers, including Bernard Lonergan, Paul Tillich, Simone Weil, Karl Rahner, Reinhold Niebuhr, and Iris Murdoch. Taken together, these essays can be understood as a partial initiation into a history of Christian theology defined by Tracy’s key virtues of plurality and ambiguity. Marked by surprising insights and connections, Filaments brings the work of one of North America’s most important religious thinkers once again to the forefront to be celebrated by longtime and new readers alike.
Research activity on intermediate filaments (IF) has increased dramatically over the past decade. For the most part, this surge of interest is due to their identification as ubiquitous constituents of the cytoskeleton and karyoskeleton (nuclear matrix) of eukaryotic cells and the fact that we know very little regarding their functions. In sharp contrast to the other major cytoskeletal systems, microfilaments and microtubules, IF exhibit a high degree of heterogeneity with regard to their protein subunit composition. Indeed, one can only marvel at the number of different IF polypeptides, their associated proteins (IFAP) and, consequently, the number of genes involved in encoding the multiple constituents of the various IF networks found in different cell types. The chapters in this book demonstrate how various experimental approaches involv ing cellular, molecular, biochemical, and immunological methods have been utilized to generate information regarding the structure and function of IF. To this end, we have gathered together chapters from experts in the major fields of IF research. In each chapter, the authors have combined reviews of the available scientific literature with their own ideas on current and future directions for IF research. The chapters have been divided into five major sections which are concerned with the subcellular organization of IF, the molecular structure of IF, the differential expression of IF genes, descriptions of associ ated proteins involved in the intracellular organization of IF, and finally an analysis of the changes seen in IF in pathological conditions.
Intermediate filaments are a large family of proteins that are the cytoskeletal elements involved in a number of skin, liver, neuromuscular, cardiac, eye and hair diseases. Intermediate filament genes are regulated in a tissue-and cell type-specific manner and their polymerized protein products protects the cells and tissue they are part of against a variety of mechanical and nonmechanical stresses. This book provides a comprehensive resource of methodology essentials, describing a variety of essential tools and assays for studying intermediate filaments. The book provides user-friendly advice and protocols covering all aspects of intermediate filaments including protein isolation and structure, protein and gene regulation, relationship to disease and apoptosis, and associated proteins. Both mammalian and non-mammalian systems and animal models are covered, making this book a must-have for any investigator wishing to study IF genes or their protein products. * Covers intermediate filaments from crystallography, protein chemistry, cell and molecular biology, microrheology, gene regulation, to animal models and human disease * Practical and user-friendly with detailed "how-to-protocols and "tricks of the trade" * Includes detailed tables of useful reagents, vendors and web links
Understanding the molecular mechanism of muscle contraction started with the discovery that striated muscle is composed of interdigitating filaments which slide against each other. Sliding filaments and the working-stroke mechanism provide the framework for individual myosin motors to act in parallel, generating tension and loaded shortening with an efficient use of chemical energy. Our knowledge of this exquisitely structured molecular machine has exploded in the last four decades, thanks to a bewildering array of techniques for studying intact muscle, muscle fibres, myofibrils and single myosin molecules. After reviewing the mechanical and biochemical background, this monograph shows how old and new experimental discoveries can be modelled, interpreted and incorporated into a coherent mathematical theory of contractility at the molecular level. The theory is applied to steady-state and transient phenomena in muscle fibres, wing-beat oscillations in insect flight muscle, motility assays and single-molecule experiments with optical trapping. Such a synthesis addresses major issues, most notably whether a single myosin motor is driven by a working stroke or a ratchet mechanism, how the working stroke is coupled to phosphate release, and whether one cycle of attachment is driven by the hydrolysis of one molecule of ATP. Ways in which the theory can be extended are explored in appendices. A separate theory is required for the cooperative regulation of muscle by calcium via tropomyosin and troponin on actin filaments. The book reviews the evolution of models for actin-based regulation, culminating in a model motivated by cryo-EM studies where tropomyosin protomers are linked to form a continuous flexible chain. It also explores muscle behaviour as a function of calcium level, including emergent phenomena such as spontaneous oscillatory contractions and direct myosin regulation by its regulatory light chains. Contraction models can be extended to all levels of calcium-activation by embedding them in a cooperative theory of thin-filament regulation, and a method for achieving this grand synthesis is proposed. Dr. David Aitchison Smith is a theoretical physicist with thirty years of research experience in modelling muscle contractility, in collaboration with experimental groups in different laboratories.
Provides interested readers with a current understanding of the biology of fishes as it relates to their utility in the laboratory.
Reviews the physiochemical properties of the main food proteins and explores the interdependency between the structure-function relationship of specific protein classes and the processing technologies applied to given foods. The book offers solutions to current problems related to the complexity of food composition, preparation and storage, and includes such topics as foams, emulsions, gelation by macromolecules, hydrolysis, microparticles/fat replacers, protein-based edible films, and extraction procedures.