Download Free Field Effects On Single Molecular Circuitry Book in PDF and EPUB Free Download. You can read online Field Effects On Single Molecular Circuitry and write the review.

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
"Inspired by the proposal that single molecules will be functional elements of future nanoelectronic and Spintronics devices, there exists considerable interest in understanding charge transport in individual molecular backbones. To investigate charge transport in single-molecule devices, in the presented thesis is exploit scanning tunneling microscopy-based approaches in the break-junction mode (STM-BJ) designed by Xu and Tao in 2003 under the effects of magnetic and electric force fields, which divide the thesis in two parts. The first block of the first part of the thesis is presented a study performed at room-temperature based on spin-dependent transport in single-molecule devices employing on thermal spin-crossover metal complexes. Here is shown that the interfacial magnetism or Spinterface, resulting from the interaction between a magnetic molecule and a metal surface, becomes the key pillar to engineer nanoscale molecular devices with novel spin-based functionalities, such as conductance switching based on a Spinfilter, because has the capability to spin-polarize the injected current through it. Also in this block are defined the required conditions which have to be gathered by any molecule to behaves as spin-filtering: be paramagnetic and susceptible to an aligned by external magnetic field, interact with the junction metal electrodes enough strongly through the extended electronic states and also present close energy values to the "fermi energy" for one of the electronic spins allowing its transport. The observed results can be summarized as a high magnetoresistive efficiency of two orders of magnitude (10000%) between the two magnetic field orientations. In the second block of the first part is presented a novel way to form highly conductive and tunable molecular wires exploiting supramolecular chemistry schemes. Single metalloporphyrin rings are wired from its metallic center by using strong Lewis bases, resulting in an increase of the conductivity of three orders of magnitude versus previous single-porphyrin wires. This novel platform of wiring individual porphyrins mimics the way nature exploits these systems by orienting the perpendicular porphyrin axis as the easy axis for electron/energy transfer. Employing this new perpendicular molecule's orientation, spin-depending current measurements were performed following the procedure of the first block using Cu and Co metalloporphyrins. results Spinfilter-switch effect. The observed results can be summarized as a medium magnetoresistive efficiency ca. factor 2-4 between the two magnetic field orientations. The third block of the first part is focused on Spin selectivity induced by electron transport through chiral molecules (CISS) replacing the paramagnetic character of the device's central molecules previously studied. A new method to quantify the spin polarization power of chiral molecules is presented using a junction of either a Dextro- or Levo- 22 amino-acid peptide coupled to an Au surface and to a magnetized Ni contact. As a consequence of the molecular property of helicity filtering and the asymmetry in the density of states at the ferromagnetic electrode, the results show how the conductance can be separated in electron helicity channels where the largest contribution is correlated with the molecular filtering effect in the spin-polarized transport through the chiral peptide. In the second part and based on using external electric fields, is demonstrated the use of the STM-BJ approach to study basic mechanisms in chemical catalysis at the nanoscale. Is designed a surface model system to probe electric field catalysis of a Diels-Alder reaction by delivering an oriented electrical field-stimulus across two reactants: a diene, attached to the STM tip electrode and a dienophile attached to the substrate electrode. This method enables studying chemical reactions at the single-molecule level. Was observed how only an external electric field aligned in the specific way respect to the reaction center and pointing from the diene (bearing a negative charge) to the dienophile (bearing a positive charge) can accelerate the Diels-Alder reaction process. Besides using the external electric field strength as tool was possible to tune the reaction processes." -- TDX.
Have you ever puzzled over how to perform Boolean logic at the atomic scale? Or wondered how you can carry out more general calculations in one single molecule or using a surface dangling bond atomic scale circuit? This volume gives you an update on the design of single molecule devices, such as recitfiers, switches and transistors, more advanced semi-classical and quantum boolean gates integrated in a single molecule or constructed atom by atom on a passivated semi-conductor surface and describes their interconnections with adapted nano-scale wiring. The main contributors to the field of single molecule logic gates and surface dangling bond atomic scale circuits theory and design, were brought together for the first time to contribute on topics such as molecule circuits, surface dangling bond circuits, quantum controlled logic gates and molecular qubits. Contributions in this volume originate from the Barcelona workshop of the AtMol conference series, held from January 12-13 2012.
Within nanoscience, an emerging discipline is the study of the physics and chemistry of single molecules. Molecules may be considered as the ultimate building blocks, and are therefore interesting for the development of molecular devices and for surface functionalization. Thus, it is interesting to study their properties when adsorbed on a suitable substrate such as a solid or crystal surface, and also for their potential applications in nano- or molecular-electronics and nanosensing. Investigations have been made possible by the advent of high resolution surface imaging and characterization techniques, commonly referred to as Scanning Probe Microscopes.This book focuses on the fascinating properties of the single molecules, and the difference between single molecules and ensembles of molecules is emphasized. As the first book intended for graduate courses in the field, after each chapter, students should be able to answer the question: “What physical or chemical properties do you learn from a single molecule in this particular context?” Contributed by experts across the disciplines, the book provides useful reference material for specialized practitioners in surface science, nanoscience and nanoelectronics.
Single-molecule electronics has evolved as a vibrant research field during the last two decades. The vision is to be able to create electronic components at the highest level of miniaturization-the single molecule. This book compiles and details cutting-edge research with contributions from chemists, physicists, theoreticians, and engineers. It cov
Klaus von Klitzing Max-Planck-Institut fur ̈ Festk ̈ orperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany Already many Cassandras have prematurely announced the end of the silicon roadmap and yet, conventional semiconductor-based transistors have been continuously shrinking at a pace which has brought us to nowadays cheap and powerful microelectronics. However it is clear that the traditional scaling laws cannot be applied if unwanted tunnel phenomena or ballistic transport dominate the device properties. It is generally expected, that a combination of silicon CMOS devices with molecular structure will dominate the ?eld of nanoelectronics in 20 years. The visionary ideas of atomic- or molecular-scale electronics already date back thirty years but only recently advanced nanotechnology, including e.g. scanning tunneling methods and mechanically controllable break junctions, have enabled to make distinct progress in this direction. On the level of f- damentalresearch,stateofthearttechniquesallowtomanipulate,imageand probechargetransportthroughuni-molecularsystemsinanincreasinglyc- trolled way. Hence, molecular electronics is reaching a stage of trustable and reproducible experiments. This has lead to a variety of physical and chemical phenomena recently observed for charge currents owing through molecular junctions, posing new challenges to theory. As a result a still increasing n- ber of open questions determines the future agenda in this ?eld.
This book presents a multidisciplinary approach to single-molecule electronics. It includes a complete overview of the field, from the synthesis and design of molecular candidates to the prevalent experimental techniques, complemented by a detailed theoretical description. This all-inclusive strategy provides the reader with the much-needed perspective to fully understand the far-reaching ramifications of single-molecule electronics. In addition, a number of state-of-the-art topics are discussed, including single-molecule spectro-electrical methods, electrochemical DNA sequencing technology, and single-molecule chemical reactions. As a result of this integrative effort, this publication may be used as an introductory textbook to both graduate and advanced undergraduate students, as well as researchers with interests in single-molecule electronics, organic electronics, surface science, and nanoscience.
Molecular Electronics is self-contained and unified in its presentation. It can be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included in this new edition are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.
The Winterschool provides a platform for reviewing and discussing new developments in the field of structural, electronic, and mechanical properties of molecular nanostructures and their applications. Subjects included are: carbon nanotubes, mechanical and electrical properties; carbon nanotubes; structure and functionalization; fullerenes and fullerene derivatives; molecular clusters; polymeric carbon phases; single molecule experiments; chemistry of molecular nanostructures; application of molecular nanostructures; layer-by-layer systems and hybrid materials; biological nanostructures; and molecular machines.
Hyper-structured molecules are topologically well-defined molecules in two or three dimensions and are expected to show novel quantum effects in the molecules themselves or in molecular sequences. This book, covering the supramolecular chemistry and characterization of hyper-structured molecules, provides an invaluable resource on the design and synthesis of topologically controlled molecules such as dendritic polymers, and on ways to handle them using techniques such as photon scanning tunneling microscopy. The book presents a comprehensive discussion of the real application of hyper-structured molecules to organic quantum devices for molecular electronics, photonics and spinics and should be of interest to all researchers working in supramolecular chemistry or molecular electronics.