Download Free Fibrous Proteins Coiled Coils Collagen And Elastomers Book in PDF and EPUB Free Download. You can read online Fibrous Proteins Coiled Coils Collagen And Elastomers and write the review.

Fibrous Protein: Coiled-Coils, Collagen and Elastomers is the first of a three-part series on Fibrous Proteins. The books are based on a very successful workshop in Alpbach, Austria on the general topic of Fibrous Proteins that gave rise to the award winning issue of Journal of Structural Biology. Part II will contain an extensive discussion of Molecular Motors and Muscle, Part III on Amyloids, Prions and Beta Proteins. Advances in Protein Chemistry is available online on ScienceDirect - full-text online of volumes 53 onwards. Reveals new structural and functional aspects of fibrous proteins Based on Fibrous Protein workshop in Alpbach, Austria that gave rise to 2003 Nobel Prize winners in Chemistry
This book provides the readers with an up-to-date review of the design, structure and function of a representative selection of fibrous proteins in both health and disease. The importance of the α-helical coiled coil, a conformational motif based on the heptad repeat in the amino acid sequence of all α-fibrous proteins (and parts of some globular proteins) is underlined by three Chapters devoted to its design, structure, function and topology. Specific proteins covered in the text and which depend on the coiled coil for their structure and function, include the intermediate filament proteins, tropomyosin, myosin, paramyosin, fibrin and members of the spectrin superfamily. Also described are fibrous proteins based on the β-pleated sheet and collagen conformations. Recombinant structural proteins, especially of silk and collagen, are discussed in the context of developing new biomaterials with varied applications. Established researchers and postgraduate students in the fields of protein chemistry, biochemistry and structural biophysics will find Fibrous Proteins: Structures and Mechanisms to be an invaluable collection of topical reviews that describe the basic advances made in the field of fibrous proteins over the past decade. This book, written by recognized authorities in the field, provides a clear account of the current status of fibrous protein research and, in addition, establishes the basis for deciding the most appropriate directions for future activity, including the applications of protein engineering and the commercial exploitation of new biomaterials.
Fibrous Proteins will give an overview over some of the most important fibrous proteins including amyloids, collagens, fibrin, flagella, intermediate filaments, microtubules, silks concerning structure and function and possible applications as biomaterials.While our knowledge on globular proteins has been increasing over the past decades, fibrillar
Molecular Motors and Muscle is the second of a three-part series on Fibrous Proteins. The books are based on a very successful workshop in Alpbach, Austria on the general topic of Fibrous Proteins that gave rise to the award-winning issue of Journal of Structural Biology. There are two major types of protein: Globular proteins which are often enzymes which speed up biochemical reactions and Fibrous proteins which often have more structural roles but can also have dynamic properties. Fibrous proteins are usually either elongated molecules which pack together to form long filaments, as in the case of the intermediate filaments in our hair and skin and as in collagen fibrils in tendons and bones or they are globular proteins which aggregate linearly to form long filaments, such as actin filaments or microtubules. Fibrous proteins act as molecular scaffolds in cells, they can be involved in transport of cell organelles or even on a visible scale as in our muscles. They provide the supporting structures of our skeletons, bones, tendons, cartilage, and skin. They define the mechanical properties of our internal hollow organs such as the intestines, heart, and blood vessels. They are vital for life and represent a fascinating subset of the proteome. Advances in Protein Chemistry is available online on ScienceDirect - full-text online of volumes 53 onwards. Elsevier book series on ScienceDirect gives multiple users throughout an institution simultaneous online access to an important compliment to primary research. Digital delivery ensures users reliable, 24-hour access to the latest peer-reviewed content. The Elsevier book series are compiled and written by the most highly regarded authors in their fields and are selected from across the globe using Elsevier's extensive researcher network. For more information about the Elsevier Book Series on ScienceDirect Program, please visit: http://www.info.sciencedirect.com/bookseries/ *Allows a comparison to be made between unique but related structures. *Quality of the text and illustrations allows ready comprehension of key protein design features. *Identifies fibrous protein sequence features for analysis of the human genome. *Analyzes design principles for fibrous protein sequences thus leading potentially to development of new devices by nanofabrication.
Nanostructured Polymer Composites for Biomedical Applications addresses the challenges researchers face regarding the creation of nanostructured polymer composites that not only have superior performance and mechanical properties, but also have acceptable biological function. This book discusses current efforts to meet this challenge by discussing the multidisciplinary nature of nanostructured polymer composite biomaterials from various fields, including materials science, polymer science, biomedical engineering and biomedicine. This compilation of existing knowledge will lead to the generation of new terminology and definitions across individual disciplines. As such, this book will help researchers and engineers develop new products and devices for use in effective medical treatment. - Summarizes the most recent strategies to develop nanostructured polymer composite biomaterials for biomedicine - Outlines the major preparation and characterization techniques for a range of polymer nanocomposites used in biomedicine - Explores the design of new types of nanostructured polymer composites for applications in drug delivery, tissue engineering, gene therapy and bone replacement
This book reviews the current knowledge on tunable hydrogels, including the range of different materials and applications, as well as the existing challenges and limitations in the field. It covers various aspects of the material design, particularly highlighting biological responsiveness, degradability and responsiveness to external stimuli. In this book, readers will discover original research data and state-of-the-art reviews in the area of hydrogel technology, with a specific focus on biotechnology and medicine. Written by leading experts, the contributions outline strategies for designing tunable hydrogels and offer a detailed evaluation of the physical and synthetic methods currently employed to achieve specific hydrogel properties and responsiveness. This highly informative book provides important theoretical and practical insights for scholars and researchers working with hydrogels for biomedical and biotechnological applications.
This second volume on a burgeoning field retains the proven concept of the spectacularly successful first one, extending and supplementing it. Individual sections are each dedicated to nanoparticles, nanostructures and patterns, nanodevices and machines, and nanoanalytics. Essential reading for an entire generation of scientists, this authoritative survey defines one of the most important new scientific fields to have emerged for many decades.
This book is a snapshot of the current state of the art of research and development on the properties and characteristics of silk and their use in medicine and industry. The field encompasses backyard silk production from ancient time to industrial methods in the modern era and includes an example of efforts to maintain silk production on Madagascar. Once revered as worth its weight in gold, silk has captured the imagination from its mythical origins onwards. The latest methods in molecular biology have opened new descriptions of the underlying properties of silk. Advances in technological innovation have created silk production by microbes as the latest breakthrough in the saga of silk research and development. The application of silk to biomaterials is now very active on the basis of excellent properties of silks including recombinant silks for biomaterials and the accumulated structural information.
Fundamentals of Multiscale Modeling of Structural Materials provides a robust introduction to the computational tools, underlying theory, practical applications, and governing physical phenomena necessary to simulate and understand a wide-range of structural materials at multiple time and length scales. The book offers practical guidelines for modeling common structural materials with well-established techniques, outlining detailed modeling approaches for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, thin films, and more.Computational approaches based on artificial intelligence and machine learning methods as complementary tools to the physics-based multiscale techniques are discussed as are modeling techniques for additively manufactured structural materials. Special attention is paid to how these methods can be used to develop the next generation of sustainable, resilient and environmentally-friendly structural materials, with a specific emphasis on bridging the atomistic and continuum modeling scales for these materials. - Synthesizes the latest cutting-edge computational multiscale modeling techniques for an array of structural materials - Emphasizes the foundations of the field and offers practical guidelines for modeling material systems with well-established techniques - Covers methods for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, and more - Highlights underlying theory, emerging areas, future directions and various applications of the modeling methods covered - Discusses the integration of multiscale modeling and artificial intelligence
Par-4 is a tumor suppressor protein first discovered and identified in 1993 by Dr. Vivek Rangnekar’s laboratory in prostate cancer cells undergoing apoptosis. Par-4 (later also known as PAWR) is a naturally occurring tumor suppressor. Studies have indicated that Par-4 selectively induces apoptosis in cancer cells while leaving normal, healthy, cells unaffected. Mechanisms contributing to the cancer-selective action of Par-4 have been associated with protein kinase A activation of intracellular Par-4 in cancer cells or GRP78 expression primarily on the surface of cancer cells. Par-4 is downregulated, inactivated or mutated in diverse cancers. This first of two volumes will be the first on the market on the topic of Par-4, and will provide the opportunity for researchers to discuss the future direction of studies, broaden the scope of research, and contribute a more complete understanding of the molecule’s structural features, key functional domains, regulation and relevant basic and clinical/translational facets.