Download Free Feedstock Recycling And Pyrolysis Of Waste Plastics Book in PDF and EPUB Free Download. You can read online Feedstock Recycling And Pyrolysis Of Waste Plastics and write the review.

Pyrolysis is a recycling technique converting plastic waste into fuels, monomers, or other valuable materials by thermal and catalytic cracking processes. It allows the treatment of mixed, unwashed plastic wastes. For many years research has been carried out on thermally converting waste plastics into useful hydrocarbons liquids such as crude oil and diesel fuel. Recently the technology has matured to the point where commercial plants are now available. Pyrolysis recycling of mixed waste plastics into generator and transportation fuels is seen as the answer for recovering value from unwashed, mixed plastics and achieving their desired diversion from landfill. This book provides an overview of the science and technology of pyrolysis of waste plastics. It describes the types of plastics that are suitable for pyrolysis recycling, the mechanism of pyrolytic degradation of various plastics, characterization of the pyrolysis products and details of commercially mature pyrolysis technologies. This book also covers co-pyrolysis technology, including: waste plastic/waste oil, waste plastics/coal, and waste plastics/rubber.
The use of plastic materials has seen a massive increase in recent years, and generation of plastic wastes has grown proportionately. Recycling of these wastes to reduce landfill disposal is problematic due to the wide variation in properties and chemical composition among the different types of plastics. Feedstock recycling is one of the alternatives available for consideration, and Feedstock Recycling of Plastic Wastes looks at the conversion of plastic wastes into valuable chemicals useful as fuels or raw materials. Looking at both scientific and technical aspects of the recycling developments, this book describes the alternatives available. Areas include chemical depolymerization, thermal processes, oxidation and hydrogenation. Besides conventional treatments, new technological approaches for the degradation of plastics, such as conversion under supercritical conditions and coprocessing with coal are discussed. This book is essential reading for those involved in plastic recycling, whether from an academic or industrial perspective. Consultants and government agencies will also find it immensely useful.
Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions begins with an introduction to the different types of plastic materials, their uses, and the concepts of reduce, reuse and recycle before examining plastic types, chemistry and degradation patterns that are organized by non-degradable plastic, degradable and biodegradable plastics, biopolymers and bioplastics. Other sections cover current challenges relating to plastic waste, explain the sources of waste and their routes into the environment, and provide systematic coverage of plastic waste treatment methods, including mechanical processing, monomerization, blast furnace feedstocks, gasification, thermal recycling, and conversion to fuel. This is an essential guide for anyone involved in plastic waste or recycling, including researchers and advanced students across plastics engineering, polymer science, polymer chemistry, environmental science, and sustainable materials. - Presents actionable solutions for reducing plastic waste, with a focus on the concepts of collection, re-use, recycling and replacement - Considers major societal and environmental issues, providing the reader with a broader understanding and supporting effective implementation - Includes detailed case studies from across the globe, offering unique insights into different solutions and approaches
The world is literally awash with plastics and this book practically provides a broad overview of plastic recycling procedures and waste management. With the huge amount of plastics floating in the oceans, fish and other sea creatures are directly suffering the consequences. On land, city leaders and planners are banning one-use plastics as well as plastic bags from grocery stores in an effort to stem the use. Many countries have made official announcements and warnings concerning the pollution caused from plastic wastes. These urgent developments have stimulated the author to study the problem and write Polymer Waste Management. Plastic recycling refers to a method that retrieves the original plastic material. However, there are many sophisticated methods available for the treatment and management of waste plastics such as basic primary recycling, where the materials are sorted and collected individually. In chemical recycling, the monomers and related compounds are processed by special chemical treatments. Other methods, such as pyrolysis, can produce fuels from waste plastics. These methods and others are treated comprehensively in the book. This groundbreaking book also discusses: General aspects, such as amount of plastics production, types of waste plastics, analysis procedures for identification of waste plastic types, standards for waste treatment, contaminants in recycled plastics. Environmental aspects, such as pollution in the marine environment and landfills. The advantages of the use of bio-based plastics. Recycling methods for individual plastic types and special catalysts.
Providing guidelines for implementing sustainable practices for traditional petroleum based plastics, biobased plastics, and recycled plastics, Sustainable Plastics and the Environment explains what sustainable plastics are, why sustainable plastics are needed, which sustainable plastics to use, and how manufacturing companies can integrate them into their manufacturing operations. A vital resource for practitioners, scientists, researchers, and students, the text includes impacts of plastics including Life Cycle Assessments (LCA) and sustainability strategies related to biobased plastics and petroleum based plastics as well as end-of-life options for petroleum and biobased plastics.
This book discusses some of the state-of-the-art techniques of recycling post-consumer plastic materials and focuses on mechanical recycling, chemical recycling and energy recovery. The book is intended for all those who are interested in recycling of post consumer plastic waste. Although, this book discusses technical aspects of recycling, the authors have endeavoured to make this book easily understandable to anyone interested in the subject enabling the reader to gain a thorough grounding in all the subjects discussed.
The concept of sustainability is already applied in all industrial sectors. The fight against climate change therefore forces us to look for alternatives in the way we move. Different alternative fuels are discussed in this book: from liquid and gaseous biofuels to electricity. Moreover, waste to fuel processes are another option to produce a significant amount of fuels. In the spirit of this book, there is not only collecting different alternatives, but creativity is also promoted in the readers of this book, so that they take an active part of the solution necessary to reduce greenhouse gas emissions.
This volume discusses the structure and growth of the plastics industry, comprehensively displaying the complete cycle of plastics from raw materials to waste and solutions related to this waste - presenting practical cost scenarios for the collection and disposal of waste.;Examining the issue of plastics waste in a broad social and environmental context, Plastics Waste Management: considers the regulations imposed on waste disposal and aspects of pollution control acts; provides a technical overview of polymers, classifications, and properties as well as the plastics industry, polymer production, and consumption; addresses extrusion basics and polymers' compatibility in a mixture of plastic waste; describes the recycling of mixed plastics waste; and explores design considerations and product life cycles with respect to environmentally friendly products in packaging applications.;Furnishing more than 400 bibliographic citations, Plastics Waste Management is a reference for pollution control, plastics, environmental, polymer and chemical engineers; recycling facility operators; plastics designers; and upper-level undergraduate and graduate students in these disciplines.
This book shows the true and often-underestimated market potential of plastics recycling, with analysis from economic, ecological, and technical perspectives. It is aimed at both technical and non-technical readers, including decision makers in material suppliers, plastic product manufacturers, governmental agencies, educators, and anyone with a general interest in plastics recycling. An overview of waste handling systems with a focus on the U.S. market is provided. Different methods of waste handling are compared from both economic and ecological perspectives. Since plastic waste recycling is essential from an ecological point of view, common strategies and new approaches to both increase the recycling rate and improve recycling economically and technically are presented. This includes processing and material properties of recycled plastics. Finally, a worldwide outlook of plastic recycling is provided with analysis of additional worldwide markets, encompassing highly developed, fast-developing, and less developed countries. This revised and expanded second edition also contains a new section on fiber-reinforced plastics and considerations for recycling them as well as numerous updates on the data and the context analyzed throughout the book. The spreadsheets used in the economic analyses are also offered as a bonus for the reader to download from plus.hanser-fachbuch.de/en. True to the authors’ mission, this book is printed on recycled paper.
This book presents the latest advances in and current research perspectives on the field of urban/industrial solid waste recycling for bio-energy and bio-fuel recovery. It chiefly focuses on five main thematic areas, namely bioreactor landfills coupled with energy and nutrient recovery; microbial insights into anaerobic digestion; greenhouse emission assessment; pyrolysis techniques for special waste treatment; and industrial waste stabilization options. In addition, it compiles the results of case studies and solid waste management perspectives from different countries.