Download Free Fat Crystallization In Emulsions Book in PDF and EPUB Free Download. You can read online Fat Crystallization In Emulsions and write the review.

An authoritative reference that contains the most up-to-date information knowledge, approaches, and applications of lipid crystals Crystallization of Lipids is a comprehensive resource that offers the most current and emerging knowledge, techniques and applications of lipid crystals. With contributions from noted experts in the field, the text covers the basic research of polymorphic structures, molecular interactions, nucleation and crystal growth and crystal network formation of lipid crystals which comprise main functional materials employed in food, cosmetic and pharmaceutical industry. The authors highlight trans-fat alternative and saturated-fat reduction technology to lipid crystallization. These two issues are the most significant challenges in the edible-application technology of lipids, and a key solution is lipid crystallization. The text focuses on the crystallization processes of lipids under various external influences of thermal fluctuation, ultrasound irradiation, shear, emulsification and additives. Designed to be practical, the book’s information can be applied to realistic applications of lipids to foods, cosmetic and pharmaceuticals. This authoritative and up-to-date guide: Highlights cutting-edge research tools designed to help analyse lipid crystallization with the most current and the conventional techniques Offers a thorough review of the information, techniques and applications of lipid crystals Includes contributions from noted experts in the field of lipid crystals Presents cutting-edge information on the topics of trans-fat alterative and saturated-fat reduction technology Written for research and development technologists as well as academics, this important resource contains research on lipid crystals which comprise the main functional materials employed in food, cosmetic and pharmaceutical industry.
Annotation The crystallization and solidification properties of lipids influence their functional properties in biological systems, foods, personal care products, pharmaceuticals, and oleo chemicals. To help its members and others optimize products or systems containing lipids, the American Oil Chemists Society devoted its 2000 conference, held in Toronto, to the fundamental principles of lipid crystallization. The resulting 20 papers discuss phase behavior and polymorphism, lipid crystallization kinetics, microstructure and rheology, and crystallization in emulsions. They also consider applications to dairy systems, manufacturing chocolate confection, and the texture of fats. Annotation c. Book News, Inc., Portland, OR (booknews.com).
The fundamental side of this book covers general aspects of stability, interfacial adsorption mechanisms, interfacial rheology, direct measurements of surface forces and the bulk rheological properties of emulsions, and self-diffusion properties as measured by NMR. The applications side covers the fields of food, crude oil and pharmaceutical emulsions. A central topic in the study of food emulsions is the role played by proteins at the water/oil interface, their conformations, and the mechanism by which they can be replaced at the interface (competitive adsorption).
The first authoritative source on the subject, this reference discusses the various levels of structure that influence the macroscopic physical properties of fat crystal networks. Fat Crystal Networks summarizes 50 years of structural research in the field, as well as a wealth of information on fat crystal networks pertinent to real-world challenge
Food emulsions have existed since long before people began to process foods for distribution and consumption. Milk, for example, is a natural emulsion/colloid in which a nutritional fat is stabilized by a milk-fat-globule membrane. Early processed foods were developed when people began to explore the art of cuisine. Butter and gravies were early foods used to enhance flavors and aid in cooking. By contrast, food emulsifiers have only recently been recognized for their abil ity to stabilize foods during processing and distribution. As economies of scale emerged, pressures for higher quality and extension of shelf life prodded the de velopment of food emulsifiers and their adjunct technologies. Natural emulsifiers, such as egg and milk proteins and phospholipids, were the first to be generally utilized. Development of technologies for processing oils, such as refining, bleaching, and hydrogenation, led to the design of synthetic food emulsifiers. Formulation of food emulsions has, until recently, been practiced more as an art than a science. The complexity offood systems has been the barrier to funda mental understanding. Scientists have long studied emulsions using pure water, hydrocarbon, and surfactant, but food systems, by contrast, are typically a com plex mixture of carbohydrate, lipid, protein, salts, and acid. Other surface-active ingredients, such as proteins and phospholipids, can demonstrate either syner- XV xvi Preface gistic or deleterious functionality during processing or in the finished food.
The physical properties associated with the saturated and trans fats obtained through partial hydrogenation of vegetable oils (PHVOs) provide the solid fat content, melting and textural properties that consumers require in food products like butter, margarines, vegetable creams, spreads, and confectionary fats. However, saturated and trans fats increase low density lipoprotein, while trans fats also lower high-density lipoprotein serum levels. These indicators increase the risk of developing cardiovascular disease, type II diabetes, stroke, and have recently been associated with metabolic syndrome. Consequently, regulatory agencies worldwide have passed legislation restricting the addition of PHVOs and their derivatives (i.e., shortenings) to food products. This has lead research groups worldwide to investigate different mechanisms to provide structural and physical properties to edible, healthy unsaturated oils. The overall objective is to achieve similar functional properties to those provided by PHVOs and shortenings to food products. This book encompasses the work of leading researchers discussing, from a scientific and technological perspective, the latest and most innovative approaches to structure edible oils without the use of trans fats. Additionally, the authors discuss practical uses and technical limitations associated with the use of "structured edible oils" in different food systems. Appealing to researchers and professionals working in lipid science, food chemistry and fat metabolism, it fills the gap in the literature for a book in this fast-changing field.
Provides in-depth coverage of the physical properties of fats and oils. Includes surface and theological characteristics as well as crystallization and phase behavior for improved nutrition and functionality in the design of new food products.
Emulsifiers are essential components of many industrial food recipes. They have the ability to act at the interface between two phases, and so can stabilise the desired mix of oil and water in a mayonnaise, ice cream or salad dressing. They can also stabilise gas/liquid mixtures in foams. More than that, they are increasingly employed in textural and organoleptic modification, in shelf life enhancement, and as complexing or stabilising agents for other components such as starch or protein. Applications include modifying the rheology of chocolate, the strengthening of dough, crumb softening and the retardation of staling in bread. This volume, now in a revised and updated second edition, introduces emulsifiers to those previously unfamiliar with their functions, and provides a state of the art account of their chemistry, manufacture, application and legal status for more experienced food technologists. Each chapter considers one of the main chemical groups of food emulsifiers. Within each group the structures of the emulsifiers are considered, together with their modes of action. This is followed by a discussion of their production / extraction and physical characteristics, together with practical examples of their application. Appendices cross-reference emulsifier types with applications, and give E-numbers, international names, synonyms and references to analytical standards and methods. This is a book for food scientists and technologists, ingredients suppliers and quality assurance personnel.
Fats are present in some form in the vast majority of processed foods we consume, as well as in many ‘natural’ products. Changes in consumer behaviour, centered around an increased emphasis on healthy food consumption, mean that it is more important than ever for food scientists to understand the properties, roles and behaviours that fats play in food and in diets. Fats in Food Technology, Second Edition is an in-depth examination of the roles and behaviours of fats in food technology and the benefits that they impart to consumers. It considers both fats that are naturally present in foods (such as milk fat in cheese) and fats that have been added to improve physical, chemical and organoleptic properties (like cocoa butter in chocolate). Newly revised and updated, the book contains useful information on the market issues that have driven change and the disciplines that have helped to regulate the trade and use of fats and oils in food technology. Drawing on the recent literature as well as the personal R&D experiences of the authors, the book highlights those areas where potential efficiencies in processing and economy in the cost of raw materials can be made. Issues concerning health, diet and lifestyle are covered in dedicated chapters. This book will be useful to anyone in industry and research establishments who has an interest in the technology of fat-containing food products, including scientists in the dairy, spreads, bakery, confectionery and wider food industries, as well those involved in the production of edible oils.