Download Free Fast Methods Incorporating Direct Elliptic Solvers For Nonlinear Applications In Fluid Dynamics Book in PDF and EPUB Free Download. You can read online Fast Methods Incorporating Direct Elliptic Solvers For Nonlinear Applications In Fluid Dynamics and write the review.

Fast solvers for elliptic PDEs form a pillar of scientific computing. They enable detailed and accurate simulations of electromagnetic fields, fluid flows, biochemical processes, and much more. This textbook provides an introduction to fast solvers from the point of view of integral equation formulations, which lead to unparalleled accuracy and speed in many applications. The focus is on fast algorithms for handling dense matrices that arise in the discretization of integral operators, such as the fast multipole method and fast direct solvers. While the emphasis is on techniques for dense matrices, the text also describes how similar techniques give rise to linear complexity algorithms for computing the inverse or the LU factorization of a sparse matrix resulting from the direct discretization of an elliptic PDE. This is the first textbook to detail the active field of fast direct solvers, introducing readers to modern linear algebraic techniques for accelerating computations, such as randomized algorithms, interpolative decompositions, and data-sparse hierarchical matrix representations. Written with an emphasis on mathematical intuition rather than theoretical details, it is richly illustrated and provides pseudocode for all key techniques. Fast Direct Solvers for Elliptic PDEs is appropriate for graduate students in applied mathematics and scientific computing, engineers and scientists looking for an accessible introduction to integral equation methods and fast solvers, and researchers in computational mathematics who want to quickly catch up on recent advances in randomized algorithms and techniques for working with data-sparse matrices.
Fortran marches on, remaining one of the principal programming languages used in high-performance scientific, numerical, and engineering computing. A series of significant revisions to the standard versions of the language have progressively enhanced its capabilities, and the latest standard - Fortran 2018 - includes many additions and improvements. This edition of Modern Fortran Explained expands on the last. Given the release of updated versions of Fortran compilers, the separate descriptions of Fortran 2003 and Fortran 2008 have been incorporated into the main text, which thereby becomes a unified description of the full Fortran 2008 version of the language. This clearer standard has allowed many deficiencies and irregularities in the earlier language versions to be resolved. Four new chapters describe the additional features of Fortran 2018, with its enhancements to coarrays for parallel programming, interoperability with C, IEEE arithmetic, and various other improvements. Written by leading experts in the field, two of whom have actively contributed to Fortran 2018, this is a complete and authoritative description of Fortran in its latest form. It is intended for new and existing users of the language, and for all those involved in scientific and numerical computing. It is suitable as a textbook for teaching and, with its index, as a handy reference for practitioners.
This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.