Download Free Extreme Waves Book in PDF and EPUB Free Download. You can read online Extreme Waves and write the review.

The theory of waves is generalized on cases of strongly nonlinear waves, multivalued waves, and particle–waves. The appearance of these waves in various continuous media and physical fields is explained by resonances and nonlinearity effects. Extreme waves emerging in different artificial and natural systems from atom scale to the Universe are explored. Vast amounts of experimental data and comparisons of them with the results of the developed theory are presented. The book was written for graduate students as well as for researchers and engineers in the fields of geophysics, nonlinear wave studies, cosmology, physical oceanography, and ocean and coastal engineering. It is designed as a professional reference for those working in the wave analysis and modeling fields.
Geological Records of Tsunamis and Other Extreme Waves provides a systematic compendium with concise chapters on the concept and history of paleotsunami research, sediment types and sediment sources, field methods, sedimentary and geomorphological characteristics, as well as dating and modeling approaches. By contrasting tsunami deposits with those of competing mechanisms in the coastal zone such as storm waves and surges, and by embedding this field of research into the wider context of tsunami science, the book is also relevant to readers interested in paleotempestology, coastal sedimentary environments, or sea-level changes, and coastal hazard management. The effectiveness of paleotsunami records in coastal hazard-mitigation strategies strongly depends on the appropriate selection of research approaches and methods that are tailored to the site-specific environment and age of the deposits. In addition to summarizing the state-of-the-art in tsunami sedimentology, Geological Records of Tsunamis and Other Extreme Waves guides researchers through establishing an appropriate research design and how to develop reliable records of prehistoric events using field-based and laboratory methods, as well as modeling techniques. Features a comprehensive overview of the state of the art in tsunami sedimentology and paleotsunami research Offers advice on the most appropriate mapping, sampling, and analytical approaches for a wide variety of coastal settings and sedimentary environments Provides methodological details for field sampling and the most important proxy analyses
Modeling of Extreme Waves in Technology and Nature is a two-volume set, comprising Evolution of Extreme Waves and Resonances (Volume I) and Extreme Waves and Shock-Excited Processes in Structures and Space Objects (Volume II). The theory of waves is generalized on cases of extreme waves. The formation and propagation of extreme waves of various physical and mechanical nature (surface, elastoplastic, fracture, thermal, evaporation) in liquid and solid media, and in structural elements contacting with bubbly and cryogenic liquids are considered analytically and numerically. The occurrence of tsunamis, giant ocean waves, turbulence, and different particle-waves is described as resonant natural phenomena. Nonstationary and periodic waves are considered using models of continuum. The change in the state of matter is taken into account using wide-range determining equations. The desire for the simplest and at the same time general description of extreme wave phenomena that takes the reader to the latest achievements of science is the main thing that characterizes this book and is revolutionary for wave theory. A description of a huge number of observations, experimental data, and calculations is also given.
This book examines the reasons behind the resonant amplification of seismic and ocean waves that have the capacity to destroy cities and ocean-going vessels. Using Charles Darwin’s important geophysical research as a starting point, it provides insights into the interaction between earthquakes with volcanoes, seaquake, and tsunami formation. In particular, the author details the observations that Darwin made on a powerful earthquake that occurred in Chile in 1835, noting how the famous naturalist and geologist used the concept of earthquake-induced vertical shock to explain the event's devastating impact. The book then goes on to show how Darwin's concept relates to the catastrophic results of the shallow quakes that recently destroyed Port-au-Prince (Haiti, 2010) and severely damaged Christchurch (New Zealand, 2011). In addition, the author asks whether Darwin's ideas are endorsed by the discoveries of modern science and whether the results of destructive earthquakes can be modeled using strongly nonlinear wave equations. Coverage also proposes that similar equations can be used to simulate the dynamics of many objects on the surface of the Earth, and to model the origin of the Universe, dark matter, and dark energy as strongly nonlinear wave phenomena. The book will appeal to students as well as researchers and engineers in geophysics, seismology, nonlinear wave studies, cosmology, physical oceanography, and ocean and coastal engineering. It will also be of use to those who are interested in the phenomena of natural catastrophes as well as those who want to learn more about the life and work of Charles Darwin.
The theory of waves is generalized on cases when waves change medium in which they appear and propagate. A reaction of structural elements and space objects to the dynamic actions of the different nature, durations, and intensities is studied. It considers the effects of transitions in the state and phase equations of media on the formation and propagation of extreme waves as a result of power, thermal, or laser pulsed action. The influence of cavitation and cool boiling of liquids, geometric and physical nonlinearity of walls on containers’ strength, and the formation of extreme waves is studied. The theory can be also used to optimize impulse technology, in particular, in the optimization of explosive processing of sheet metal by explosion in a liquid. This book was written for researchers and engineers, as well as graduate students in the fields of thermal fluids, aerospace, nuclear engineering, and nonlinear waves.
This revised and updated second edition details the vast progress that has been achieved in the understanding of the physical mechanisms of rogue wave phenomenon in recent years. The selected articles address such issues as the formation of rogue waves due to modulational instability of nonlinear wave field, physical and statistical properties of extreme ocean wave generation in deep water as well as in shallow water, various models of nonlinear water waves, special analysis of nonlinear resonances between water waves and the relation between in situ observations, experimental data and rogue wave theories. In addition, recent results on tsunami waves due to subaerial landslides are presented. This book is written for specialists in the fields of fluid mechanics, applied mathematics, nonlinear physics, physical oceanography and geophysics, and for students learning these subjects.
Science and Engineering of Freak Waves provides a holistic and interdisciplinary view of extreme ocean waves for both scientific and engineering applications. Readers will learn the fundamental theory of extreme waves and the implications they have on coastal structures and methods of prediction through chapters that review the definitions of extreme waves, their history and other important observations. After this, the book's authors describe the theory and modeling of extreme waves that occur in various situations. Final sections provide examples of the application of extreme wave research results to various engineering designs are presented. This book provides a comprehensive overview of the current status of our understandings on freak/rogue waves, the science of extreme waves, prediction, and their engineering applications. As such, it is a must read for physical oceanographers looking for a better understanding of prediction models and the history of these waves, and engineers looking for more information on preparedness and implications for offshore structures and shipping. Presents the history of extreme wave research, including field observations, experiments, numerical modeling, data assimilation and theory Includes numerous freak wave prediction systems and explains when and how they should be used Showcases global case studies where prediction has or could have been used to increase preparedness Provides sample codes so that readers can easily apply these methods to their own science
Brest, 29 au 29 novembre 2000. C'est aujourd'hui une certitude que certaines vagues outrepassent en hauteur et en cambrure les prédictions fondées sur les modèles courants. L'amélioration de la compréhension des raisons, des mécanismes, et des circonstances de leur apparition se doit donc d'être une priorité de recherche. Le colloque Rogue Waves 2000 a rassemblé à Brest nombre des scientifiques et ingénieurs actifs sur le sujet, qui y ont trouvé l'occasion de confronter et discuter leurs avancées les plus récentes en termes de définition, de statistiques, de modélisation et de prédiction de ces vagues anormales. Mots-clés : vagues, extrêmes, non-linéarités, vagues anormales, vagues scélérates.
This revised and updated second edition details the vast progress that has been achieved in the understanding of the physical mechanisms of rogue wave phenomenon in recent years. The selected articles address such issues as the formation of rogue waves due to modulational instability of nonlinear wave field, physical and statistical properties of extreme ocean wave generation in deep water as well as in shallow water, various models of nonlinear water waves, special analysis of nonlinear resonances between water waves and the relation between in situ observations, experimental data and rogue wave theories. In addition, recent results on tsunami waves due to subaerial landslides are presented. This book is written for specialists in the fields of fluid mechanics, applied mathematics, nonlinear physics, physical oceanography and geophysics, and for students learning these subjects.
This book is intended as a handbook for professionals and researchers in the areas of Physical Oceanography, Ocean and Coastal Engineering and as a text for graduate students in these fields. It presents a comprehensive study on surface ocean waves induced by wind, including basic mathematical principles, physical description of the observed phenomena, practical forecasting techniques of various wave parameters and applications in ocean and coastal engineering, all from the probabilistic and spectral points of view. The book commences with a description of mechanisms of surface wave generation by wind and its modern modeling techniques. The stochastic and probabilistic terminology is introduced and the basic statistical and spectral properties of ocean waves are developed and discussed in detail. The bulk of material deals with the prediction techniques for waves in deep and coastal waters for simple and complex ocean basins and complex bathymetry. The various prediction methods, currently used in oceanography and ocean engineering, are described and the examples of practical calculations illustrate the basic text. An appendix provides a description of the modern methods of wave measurement, including the remote sensing techniques. Also the wave simulation methods and random data analysis techniques are discussed. In the book a lot of discoveries of the Russian and East European scientists, largely unknown in the Western literature due to the language barrier, are referred to.