Download Free Extreme Values Regular Variation And Point Processes Book in PDF and EPUB Free Download. You can read online Extreme Values Regular Variation And Point Processes and write the review.

This book examines the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors. It emphasizes the core primacy of three topics necessary for understanding extremes: the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces.
This book examines the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors. It emphasizes the core primacy of three topics necessary for understanding extremes: the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces.
Focuses on theoretical results along with applications All the main topics covering the heart of the subject are introduced to the reader in a systematic fashion Concentration is on the probabilistic and statistical aspects of extreme values Excellent introduction to extreme value theory at the graduate level, requiring only some mathematical maturity
Classical Extreme Value Theory-the asymptotic distributional theory for maxima of independent, identically distributed random variables-may be regarded as roughly half a century old, even though its roots reach further back into mathematical antiquity. During this period of time it has found significant application-exemplified best perhaps by the book Statistics of Extremes by E. J. Gumbel-as well as a rather complete theoretical development. More recently, beginning with the work of G. S. Watson, S. M. Berman, R. M. Loynes, and H. Cramer, there has been a developing interest in the extension of the theory to include, first, dependent sequences and then continuous parameter stationary processes. The early activity proceeded in two directions-the extension of general theory to certain dependent sequences (e.g., Watson and Loynes), and the beginning of a detailed theory for stationary sequences (Berman) and continuous parameter processes (Cramer) in the normal case. In recent years both lines of development have been actively pursued.
Directly oriented towards real practical application, this book develops both the basic theoretical framework of extreme value models and the statistical inferential techniques for using these models in practice. Intended for statisticians and non-statisticians alike, the theoretical treatment is elementary, with heuristics often replacing detailed mathematical proof. Most aspects of extreme modeling techniques are covered, including historical techniques (still widely used) and contemporary techniques based on point process models. A wide range of worked examples, using genuine datasets, illustrate the various modeling procedures and a concluding chapter provides a brief introduction to a number of more advanced topics, including Bayesian inference and spatial extremes. All the computations are carried out using S-PLUS, and the corresponding datasets and functions are available via the Internet for readers to recreate examples for themselves. An essential reference for students and researchers in statistics and disciplines such as engineering, finance and environmental science, this book will also appeal to practitioners looking for practical help in solving real problems. Stuart Coles is Reader in Statistics at the University of Bristol, UK, having previously lectured at the universities of Nottingham and Lancaster. In 1992 he was the first recipient of the Royal Statistical Society's research prize. He has published widely in the statistical literature, principally in the area of extreme value modeling.
A comprehensive account of the theory and applications of regular variation.
It appears that we live in an age of disasters: the mighty Missis sippi and Missouri flood millions of acres, earthquakes hit Tokyo and California, airplanes crash due to mechanical failure and the seemingly ever increasing wind speeds make the storms more and more frightening. While all these may seem to be unexpected phenomena to the man on the street, they are actually happening according to well defined rules of science known as extreme value theory. We know that records must be broken in the future, so if a flood design is based on the worst case of the past then we are not really prepared against floods. Materials will fail due to fatigue, so if the body of an aircraft looks fine to the naked eye, it might still suddenly fail if the aircraft has been in operation over an extended period of time. Our theory has by now penetrated the so cial sciences, the medical profession, economics and even astronomy. We believe that our field has come of age. In or~er to fully utilize the great progress in the theory of extremes and its ever increasing acceptance in practice, an international conference was organized in which equal weight was given to theory and practice. This book is Volume I of the Proceedings of this conference. In selecting the papers for Volume lour guide was to have authoritative works with a large variety of coverage of both theory and practice.
This comprehensive text gives an interesting and useful blend of the mathematical, probabilistic and statistical tools used in heavy-tail analysis. It is uniquely devoted to heavy-tails and emphasizes both probability modeling and statistical methods for fitting models. Prerequisites for the reader include a prior course in stochastic processes and probability, some statistical background, some familiarity with time series analysis, and ability to use a statistics package. This work will serve second-year graduate students and researchers in the areas of applied mathematics, statistics, operations research, electrical engineering, and economics.