Download Free Extensions And Restrictions Of Generalized Probabilistic Theories Book in PDF and EPUB Free Download. You can read online Extensions And Restrictions Of Generalized Probabilistic Theories and write the review.

Generalized probabilistic theories (GPTs) allow us to write quantum theory in a purely operational language and enable us to formulate other, vastly different theories. As it turns out, there is no canonical way to integrate the notion of subsystems within the framework of convex operational theories. Sections can be seen as generalization of subsystems and describe situations where not all possible observables can be implemented. Jonathan Steinberg discusses the mathematical foundations of GPTs using the language of Archimedean order unit spaces and investigates the algebraic nature of sections. This includes an analysis of the category theoretic structure and the transformation properties of the state space. Since the Hilbert space formulation of quantum mechanics uses tensor products to describe subsystems, he shows how one can interpret the tensor product as a special type of a section. In addition he applies this concept to quantum theory and compares it with the formulation in the algebraic approach. Afterwards he gives a complete characterization of low dimensional sections of arbitrary quantum systems using the theory of matrix pencils.
This is a survey of the recent developments in the rapidly expanding field of asymptotic distribution theory, with a special emphasis on the problems of time dependence and heterogeneity. The book is designed to be useful on two levels. First as a textbook and reference work, giving definitions of the relevant mathematical concepts, statements, and proofs of the important results from the probability literature, and numerous examples; and second, as an account of recent work in the field of particular interest to econometricians, including a number of important new results. It is virtually self-contained, with all but the most basic technical prerequisites being explained in their context; mathematical topics include measure theory, integration, metric spaces, and topology, with applications to random variables, and an extended treatment of conditional probability. Other subjects treated include: stochastic processes, mixing processes, martingales, mixingales, and near-epoch dependence; the weak and strong laws of large numbers; weak convergence; and central limit theorems for nonstationary and dependent processes. The functional central limit theorem and its ramifications are covered in detail, including an account of the theoretical underpinnings (the weak convergence of measures on metric spaces), Brownian motion, the multivariate invariance principle, and convergence to stochastic integrals. This material is of special relevance to the theory of cointegration.
Rosenberg applies current thinking in philosophy of science to neoclassical economics in order to assess its claims to scientific standing. Although philosophers have used history and psychology as paradigms for the examination of social science, there is good reason to believe that economics is a more appropriate subject for analysis: it is the most systematized and quantified of the social sciences; its practitioners have reached a measure of consensus on important aspects of their subject; and it encompasses a large number of apparently law-like propositions.
Every finance professional wants and needs a competitive edge. A firm foundation in advanced mathematics can translate into dramatic advantages to professionals willing to obtain it. Many are not—and that is the competitive edge these books offer the astute reader. Published under the collective title of Foundations of Quantitative Finance, this set of ten books develops the advanced topics in mathematics that finance professionals need to advance their careers. These books expand the theory most do not learn in graduate finance programs, or in most financial mathematics undergraduate and graduate courses. As an investment executive and authoritative instructor, Robert R. Reitano presents the mathematical theories he encountered and used in nearly three decades in the financial services industry and two decades in academia where he taught in highly respected graduate programs. Readers should be quantitatively literate and familiar with the developments in the earlier books in the set. While the set offers a continuous progression through these topics, each title can be studied independently. Features Extensively referenced to materials from earlier books Presents the theory needed to support advanced applications Supplements previous training in mathematics, with more detailed developments Built from the author's five decades of experience in industry, research, and teaching Published and forthcoming titles in the Robert R. Reitano Quantitative Finance Series: Book I: Measure Spaces and Measurable Functions Book II: Probability Spaces and Random Variables Book III: The Integrals of Lebesgue and (Riemann-)Stieltjes Book IV: Distribution Functions and Expectations Book V: General Measure and Integration Theory Book VI: Densities, Transformed Distributions, and Limit Theorems Book VII: Brownian Motion and Other Stochastic Processes Book VIII: Itô Integration and Stochastic Calculus 1 Book IX: Stochastic Calculus 2 and Stochastic Differential Equations Book X: Classical Models and Applications in Finance
First published in 2004. Routledge is an imprint of Taylor & Francis, an informa company.
This book demonstrates the usefulness of geometric methods in probability theory and mathematical statistics, and shows close relationships between these disciplines and convex analysis. Deep facts and statements from the theory of convex sets are discussed with their applications to various questions arising in probability theory, mathematical statistics, and the theory of stochastic processes. The book is essentially self-contained, and the presentation of material is thorough in detail. Audience: The topics considered in the book are accessible to a wide audience of mathematicians, and graduate and postgraduate students, whose interests lie in probability theory and convex geometry.
Quantum Theory, together with the principles of special and general relativity, constitute a scientific revolution that has profoundly influenced the way in which we think about the universe and the fundamental forces that govern it. The Historical Development of Quantum Theory is a definitive historical study of that scientific work and the human struggles that accompanied it from the beginning. Drawing upon such materials as the resources of the Archives for the History of Quantum Physics, the Niels Bohr Archives, and the archives and scientific correspondence of the principal quantum physicists, as well as Jagdish Mehra's personal discussions over many years with most of the architects of quantum theory, the authors have written a rigorous scientific history of quantum theory in a deeply human context. This multivolume work presents a rich account of an intellectual triumph: a unique analysis of the creative scientific process. The Historical Development of Quantum Theory is science, history, and biography, all wrapped in the story of a great human enterprise. Its lessons will be an aid to those working in the sciences and humanities alike.
First issued in translation as a two-volume work in 1975, this classic book provides the first complete development of the theory of probability from a subjectivist viewpoint. It proceeds from a detailed discussion of the philosophical mathematical aspects to a detailed mathematical treatment of probability and statistics. De Finetti’s theory of probability is one of the foundations of Bayesian theory. De Finetti stated that probability is nothing but a subjective analysis of the likelihood that something will happen and that that probability does not exist outside the mind. It is the rate at which a person is willing to bet on something happening. This view is directly opposed to the classicist/ frequentist view of the likelihood of a particular outcome of an event, which assumes that the same event could be identically repeated many times over, and the 'probability' of a particular outcome has to do with the fraction of the time that outcome results from the repeated trials.
This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.
This volume provides a broad perspective on the state of the art in the philosophy and conceptual foundations of quantum mechanics. Its essays take their starting point in the work and influence of Itamar Pitowsky, who has greatly influenced our understanding of what is characteristically non-classical about quantum probabilities and quantum logic, and this serves as a vantage point from which they reflect on key ongoing debates in the field. Readers will find a definitive and multi-faceted description of the major open questions in the foundations of quantum mechanics today, including: Is quantum mechanics a new theory of (contextual) probability? Should the quantum state be interpreted objectively or subjectively? How should probability be understood in the Everett interpretation of quantum mechanics? What are the limits of the physical implementation of computation? The impact of this volume goes beyond the exposition of Pitowsky’s influence: it provides a unique collection of essays by leading thinkers containing profound reflections on the field. Chapter 1. Classical logic, classical probability, and quantum mechanics (Samson Abramsky) Chapter 2. Why Scientific Realists Should Reject the Second Dogma of Quantum Mechanic (Valia Allori) Chapter 3. Unscrambling Subjective and Epistemic Probabilities (Guido Bacciagaluppi) Chapter 4. Wigner’s Friend as a Rational Agent (Veronika Baumann, Časlav Brukner) Chapter 5. Pitowsky's Epistemic Interpretation of Quantum Mechanics and the PBR Theorem (Yemima Ben-Menahem) Chapter 6. On the Mathematical Constitution and Explanation of Physical Facts (Joseph Berkovitz) Chapter 7. Everettian probabilities, the Deutsch-Wallace theorem and the Principal Principle (Harvey R. Brown, Gal Ben Porath) Chapter 8. ‘Two Dogmas’ Redu (Jeffrey Bub) Chapter 9. Physical Computability Theses (B. Jack Copeland, Oron Shagrir) Chapter 10. Agents in Healey’s Pragmatist Quantum Theory: A Comparison with Pitowsky’s Approach to Quantum Mechanics (Mauro Dorato) Chapter 11. Quantum Mechanics As a Theory of Observables and States and, Thereby, As a Theory of Probability (John Earman, Laura Ruetsche) Chapter 12. The Measurement Problem and two Dogmas about Quantum Mechanic (Laura Felline) Chapter 13. There Is More Than One Way to Skin a Cat: Quantum Information Principles In a Finite World(Amit Hagar) Chapter 14. Is Quantum Mechanics a New Theory of Probability? (Richard Healey) Chapter 15. Quantum Mechanics as a Theory of Probability (Meir Hemmo, Orly Shenker) Chapter 16. On the Three Types of Bell's Inequalities (Gábor Hofer-Szabó) Chapter 17. On the Descriptive Power of Probability Logic (Ehud Hrushovski) Chapter 18. The Argument against Quantum Computers (Gil Kalai) Chapter 19. Why a Relativistic Quantum Mechanical World Must be Indeterministic (Avi Levy, Meir Hemmo) Chapter 20. Subjectivists about Quantum Probabilities Should be Realists about Quantum States (Wayne C. Myrvold) Chapter 21. The Relativistic Einstein-Podolsky-Rosen Argument (Michael Redhead) Chapter 22. What price statistical independence? How Einstein missed the photon.(Simon Saunders) Chapter 23. How (Maximally) Contextual is Quantum Mechanics? (Andrew W. Simmons) Chapter 24. Roots and (Re)Sources of Value (In)Definiteness Versus Contextuality (Karl Svozil) Chapter 25: Schrödinger’s Reaction to the EPR Paper (Jos Uffink) Chapter 26. Derivations of the Born Rule (Lev Vaidman) Chapter 27. Dynamical States and the Conventionality of (Non-) Classicality (Alexander Wilce).