Download Free Exploring Genomes Book in PDF and EPUB Free Download. You can read online Exploring Genomes and write the review.

Rapid advances in high-throughput genome sequencing technologies foreshadow a near-future in which millions of individuals will gain affordable access to their complete genome sequence. This promises to give unprecedented insights into the fundamental biological nature of ourselves and our species: where we came from, how we are born, how we interact with our environment, how we get sick, how we get well, and how we age. Personal genomics is therefore an important component of the inevitable transition towards personalized medicine, as the medical establishment begins to explore and evaluate the role of personal genomics in health and medicine. However there is currently very little training available for medical practitioners. Exploring Personal Genomics provides a novel, inquiry-based approach to understanding and interpreting the practical, medical, and societal aspects of personal genomic information. It is presented in two parts: the first provides readers of all backgrounds with a fundamental understanding of the biology of human genomes, information on how to obtain and understand digital representations of personal genomic data, tools and techniques for exploring the personal genomics of ancestry and genealogy, discovery and interpretation of genetic trait associations, and the role of personal genomics in drug response. The second part offers more advanced readers an understanding of the science, tools, and techniques for investigating interactions between a personal genome and the environment, connecting DNA to physiology, assessing rare variants and structural variation, and exploring resources for performing personal biological investigation. This advanced textbook is primarily aimed at undergraduate and graduate students taking classes in genomic medicine, genetics, and bioinformatics. It will also be of relevance and use to medical practitioners, evolutionary biologists, geneticists and individuals interested in exploring their personal genetic data.
These interactive tutorials are used in conjunction with the online tutorials found at www.whfreeman.com/young, to guide students through live searches and analyses on the National Center for Biotechnology Information (NCBI) database. This edition includes three new tutorials on the COGs database, functional analysis, and environmental genomics.
An extension of the original volume, reflecting the latest advances in understanding these elements. This title is published by the American Society for Microbiology Press and distributed by Taylor and Francis in rest of world territories.
The #1 NEW YORK TIMES Bestseller The basis for the PBS Ken Burns Documentary The Gene: An Intimate History Now includes an excerpt from Siddhartha Mukherjee’s new book Song of the Cell! From the Pulitzer Prize–winning author of The Emperor of All Maladies—a fascinating history of the gene and “a magisterial account of how human minds have laboriously, ingeniously picked apart what makes us tick” (Elle). “Sid Mukherjee has the uncanny ability to bring together science, history, and the future in a way that is understandable and riveting, guiding us through both time and the mystery of life itself.” —Ken Burns “Dr. Siddhartha Mukherjee dazzled readers with his Pulitzer Prize-winning The Emperor of All Maladies in 2010. That achievement was evidently just a warm-up for his virtuoso performance in The Gene: An Intimate History, in which he braids science, history, and memoir into an epic with all the range and biblical thunder of Paradise Lost” (The New York Times). In this biography Mukherjee brings to life the quest to understand human heredity and its surprising influence on our lives, personalities, identities, fates, and choices. “Mukherjee expresses abstract intellectual ideas through emotional stories…[and] swaddles his medical rigor with rhapsodic tenderness, surprising vulnerability, and occasional flashes of pure poetry” (The Washington Post). Throughout, the story of Mukherjee’s own family—with its tragic and bewildering history of mental illness—reminds us of the questions that hang over our ability to translate the science of genetics from the laboratory to the real world. In riveting and dramatic prose, he describes the centuries of research and experimentation—from Aristotle and Pythagoras to Mendel and Darwin, from Boveri and Morgan to Crick, Watson and Franklin, all the way through the revolutionary twenty-first century innovators who mapped the human genome. “A fascinating and often sobering history of how humans came to understand the roles of genes in making us who we are—and what our manipulation of those genes might mean for our future” (Milwaukee Journal-Sentinel), The Gene is the revelatory and magisterial history of a scientific idea coming to life, the most crucial science of our time, intimately explained by a master. “The Gene is a book we all should read” (USA TODAY).
This book gives a comprehensive overview of the unique roles that non-coding repetitive elements such as satellite DNAs play in different physiological and evolutionary processes. It presents the gene-regulatory aspect of satellite DNAs in different model systems including mammals, insects and plants. In addition, evolutionary aspects of activation of satellite DNAs in terms of transcription and proliferation are highlighted, revealing the role of satellite DNAs in the process of adaptation to changing environment and in the speciation process. Finally, the book discusses satellite DNA activation during pathological transformation and the mechanisms by which they affect disease progression. Namely, some satellite DNAs promote the oncogenic processes by affecting genome epigenetic regulation as well as genome integrity. Readers get a full overview of the latest research on satellite DNA.
Recognizing the important contributions that genomic analysis can make to agriculture, production and companion animal science, evolutionary biology, and human health with respect to the creation of models for genetic disorders, the National Academies convened a group of individuals to plan a public workshop that would: (1) assess these contributions; (2) identify potential research directions for existing genomics programs; and (3) highlight the opportunities of a coordinated, multi-species genomics effort for the science and policymaking communities. Their efforts culminated in a workshop sponsored by the U.S. Department of Agriculture, Department of Energy, National Science Foundation, and the National Institutes of Health. The workshop was convened on February 19, 2002. The goal of the workshop was to focus on domestic animal genomics and its integration with other genomics and functional genomics projects.
Advances in Animal Genomics provides an outstanding collection of integrated strategies involving traditional and modern - omics (structural, functional, comparative and epigenomics) approaches and genomics-assisted breeding methods which animal biotechnologists can utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in livestock. Written by international experts on animal genomics, this book explores the recent advances in high-throughput, next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches which have enabled to produce huge genomic and transcriptomic resources globally on a genome-wide scale. This book is an important resource for researchers, students, educators and professionals in agriculture, veterinary and biotechnology sciences that enables them to solve problems regarding sustainable development with the help of current innovative biotechnologies. - Integrates basic and advanced concepts of animal biotechnology and presents future developments - Describes current high-throughput next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches for sustainable livestock production - Illustrates integrated strategies to dissect and decode the molecular and gene regulatory networks involved in complex quantitative yield and stress tolerance traits in livestock - Ensures readers will gain a strong grasp of biotechnology for sustainable livestock production with its well-illustrated discussion
Useful for students, this work deals with Biochemistry, introducing developments.
In the nearly 60 years since Watson and Crick proposed the double helical structure of DNA, the molecule of heredity, waves of discoveries have made genetics the most thrilling field in the sciences. The study of genes and genomics today explores all aspects of the life with relevance in the lab, in the doctor's office, in the courtroom and even in social relationships. In this helpful guidebook, one of the most respected and accomplished human geneticists of our time communicates the importance of genes and genomics studies in all aspects of life. With the use of core concepts and the integration of extensive references, this book provides students and professionals alike with the most in-depth view of the current state of the science and its relevance across disciplines. - Bridges the gap between basic human genetic understanding and one of the most promising avenues for advances in the diagnosis, prevention and treatment of human disease - Includes the latest information on diagnostic testing, population screening, predicting disease susceptibility, pharmacogenomics and more - Explores ethical, legal, regulatory and economic aspects of genomics in medicine - Integrates historical (classical) genetics approach with the latest discoveries in structural and functional genomics
From the author of the acclaimed The Epigenetics Revolution (‘A book that would have had Darwin swooning’ – Guardian) comes another thrilling exploration of the cutting edge of human science. For decades after the structure of DNA was identified, scientists focused purely on genes, the regions of the genome that contain codes for the production of proteins. Other regions – 98% of the human genome – were dismissed as ‘junk’. But in recent years researchers have discovered that variations in this ‘junk’ DNA underlie many previously intractable diseases, and they can now generate new approaches to tackling them. Nessa Carey explores, for the first time for a general audience, the incredible story behind a controversy that has generated unusually vituperative public exchanges between scientists. She shows how junk DNA plays an important role in areas as diverse as genetic diseases, viral infections, sex determination in mammals, human biological complexity, disease treatments, even evolution itself – and reveals how we are only now truly unlocking its secrets, more than half a century after Crick and Watson won their Nobel prize for the discovery of the structure of DNA in 1962.