Download Free Experimental Study Of Heat Transfer And Fluid Flow In Unsaturated Porous Media Book in PDF and EPUB Free Download. You can read online Experimental Study Of Heat Transfer And Fluid Flow In Unsaturated Porous Media and write the review.

The book is specially designed for postgraduate candidates and research scholars. We have assumed that the reader is conversant with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained. The book describes temperature variation, heat energy exchange, and fluid movement in porous media with the help of experimentation. The experiment is carried with different spherical balls, and water is used as fluid. The materials used as a porous media have different thermodynamic properties. The amount of heat energy exchange and thermal nonequilibrium is analyzed. The heat energy exchange is compared for different materials.
Rainfall infiltration is an important component of the hydrologic cycle and plays a crucial role in the formation of surface runoff, providing subsurface water that governs the water supply for agriculture, the transport of pollutants through the vadose zone, and the recharge of aquifers. The spatiotemporal evolution of the infiltration rate under natural conditions cannot currently be deduced by direct measurements at any scale of interest. Therefore, the use of infiltration modeling is of fundamental importance in applied hydrology and allows this process to be described through measurable quantities. In spite of the continuous development of infiltration modeling in recent decades, the estimation of infiltration at different spatial scales, i.e., from the local to watershed scales, remains a complex problem because of the natural spatial variability of both soil hydraulic characteristics and rainfall. For many years, research activity has been limited to the development of local or point infiltration models for vertically homogeneous soils with flat surfaces. Recent scientific literature has extended infiltration modeling to many other involved elements whose representation, however, still represents an open problem. In this context, this volume attempts to make a contribution to the modeling of point infiltration into vertically non-uniform soils or soils modified by human activities, infiltration over horizontal heterogeneous areas, infiltration into soil surfaces with significant slopes, interaction between the infiltration process and the groundwater system, and infiltration due to irrigation and the surface water–groundwater dynamics.
Advances in Heat Transfer
The rapid growth of literature on convective heat and mass transfer through porous media has brought both engineering and fundamental knowledge to a new state of completeness and depth. Additionally, several new questions of fundamental merit have arisen in several areas which bear direct relation to further advancement of basic knowledge and applications in this field. For example, the growth of fundamental heat transfer data and correlations for engineering use for saturated media has now reached the point where the relations for heat transfer coefficients and flow parameters are known well enough for design purposes. Multiple flow field regimes in natural convection have been identified in several important enclosure geometries. New questions have arisen on the nature of equations being used in theoretical studies, i. e. , the Validity of Darcy assumption is being brought into question; Wall effects in high and low velocity flow fields have been found to play a role in predicting transport coefficients; The formulation of transport problems in fractured media are being investigated as both an extension of those in a homogeneous medium and for application in engineering systems in geologic media and problems on saturated media are being addressed to determine their proper formulation and solution. The long standing problem of how to adequately formulate and solve problems of multi-phase heat and mass transfer in heterogeneous media is important in the technologies of chemical reactor engineering and enhanced oil recovery.
This important resource explores recent theoretical advances and modelling on fluids transport in fractal porous systems and presents a systematic understanding of the characterization of complex microstructure and transport mechanism in fractal porous media. Modelling of Flow and Transport in Fractal Porous Media shows how fractal theory and technology, combined with other modern experiments and numerical simulation methods, will assist researchers and practitioners in modelling of transport properties of fractal porous media, such as fluid flow, heat and mass transfer, mechanical characteristics, and electrical conductivity. - Presents the main methods and technologies for transport characterization of fractal porous media, including soils, reservoirs and artificial materials - Provides the most recent theoretical advances in modelling of fractal porous media, including gas and vapor transport in fibrous materials, nonlinear seepage flow in hydrocarbon reservoirs, mass transfer of porous nanofibers, and fractal mechanics of unsaturated soils - Includes multidisciplinary examples of applications of fractal theory to aid researchers and practitioners in characterizing various porous media structures
Over the last three decades, advances in modeling flow, heat, and mass transfer through a porous medium have dramatically transformed engineering applications. Comprehensive and cohesive, Handbook of Porous Media, Second Edition presents a compilation of research related to heat and mass transfer including the development of practical applications
This textbook provides a general overview of porous media flow, and introduces various theoretical tools to characterize and predict the flow. It has been written for graduate and advanced graduate students in various engineering disciplines. It includes the topics such as fluid flow, conduction, convection, and radiation in porous media as well as porous medium aspects of biological systems. The concepts are supported by numerous solved examples to aid self-learning in students. The textbook also contains illustrated diagrams for better understanding of the concepts. This textbook will be useful for the core course of "Flow through Porous media" for graduate and advanced graduate students in various engineering disciplines. This textbook will also serve as a refresher course for researchers who are engaged in research related to porous media flow.