Download Free Experience Dependent Plasticity Of Neocortical Inhibitory Circuits Book in PDF and EPUB Free Download. You can read online Experience Dependent Plasticity Of Neocortical Inhibitory Circuits and write the review.

This volume will explore the most recent findings on cellular mechanisms of inhibitory plasticity and its functional role in shaping neuronal circuits, their rewiring in response to experience, drug addiction and in neuropathology. Inhibitory Synaptic Plasticity will be of particular interest to neuroscientists and neurophysiologists.
Neuroscience has long been focused on understanding neural plasticity in both development and adulthood. Experimental work in this area has focused almost entirely on plasticity at excitatory synapses. A growing body of evidence suggests that plasticity at inhibitory GABAergic and glycinergic synapses is of critical importance during both development and aging. The book brings together the work of researchers investigating inhibitory plasticity at many levels of analysis and in several different preparations. This topic is of wide relevance across a number of different areas of research in neuroscience and neurology. Medical problems such as epilepsy, mental illness, drug abuse, and movement disorders can result from malfunctioning inhibitory circuits. Further, the maturation of inhibitory circuits may trigger the onset of critical periods of neural circuit plasticity, raising the possibility that such plastici periods could be reactivated for medical benefit by manipulating inhibitory circuitry.
Hebb's postulate provided a crucial framework to understand synaptic alterations underlying learning and memory. Hebb's theory proposed that neurons that fire together, also wire together, which provided the logical framework for the strengthening of synapses. Weakening of synapses was however addressed by "not being strengthened", and it was only later that the active decrease of synaptic strength was introduced through the discovery of long-term depression caused by low frequency stimulation of the presynaptic neuron. In 1994, it was found that the precise relative timing of pre and postynaptic spikes determined not only the magnitude, but also the direction of synaptic alterations when two neurons are active together. Neurons that fire together may therefore not necessarily wire together if the precise timing of the spikes involved are not tighly correlated. In the subsequent 15 years, Spike Timing Dependent Plasticity (STDP) has been found in multiple brain brain regions and in many different species. The size and shape of the time windows in which positive and negative changes can be made vary for different brain regions, but the core principle of spike timing dependent changes remain. A large number of theoretical studies have also been conducted during this period that explore the computational function of this driving principle and STDP algorithms have become the main learning algorithm when modeling neural networks. This Research Topic will bring together all the key experimental and theoretical research on STDP.
By means of quantitative analysis of the tissue components in the cortex of the mouse, this book presents an overall picture of the cortical network which is then related to various theories on cortical function. Centering around the idea of a diffuse network in a fairly homogeneous population of excitatory neurons, that of the pyramidal cells, it shows that the whole organisation in the cortical skeleton of pryramidal cells corresponds well with the idea of an associative memory and with the theory of cell assemblies. Provides the reader with information on quantitative neuroanatomy and also on the methods used, in particular those that vary from the norm.
This volume makes clear that the cognitive and behavioural symptoms of neurologic disorders and syndromes are dynamic and changing. Each chapter describes the neuroplastic processes at work in a particular condition, giving rise to these ongoing cognitive changes.
This open access book describes marked advances in imaging technology that have enabled the visualization of phenomena in ways formerly believed to be completelyimpossible. These technologies have made major contributions to the elucidation of the pathology of diseases as well as to their diagnosis and therapy. The volume presents various studies from molecular imaging to clinical imaging. It also focuses on innovative, creative, advanced research that gives full play to imaging technology inthe broad sense, while exploring cross-disciplinary areas in which individual research fields interact and pursuing the development of new techniques where they fuse together. The book is separated into three parts, the first of which addresses the topic of visualizing and controlling molecules for life. Th e second part is devoted to imaging of disease mechanisms, while the final part comprises studies on the application of imaging technologies to diagnosis and therapy. Th e book contains the proceedings of the 12th Uehara International Symposium 2017, “Make Life Visible” sponsored by the Uehara Memorial Foundation and held from June 12 to 14, 2017. It is written by leading scientists in the field and is an open access publication under a CC BY 4.0 license.
A comprehensive, multidisciplinary review, Neural Plasticity and Memory: From Genes to Brain Imaging provides an in-depth, up-to-date analysis of the study of the neurobiology of memory. Leading specialists share their scientific experience in the field, covering a wide range of topics where molecular, genetic, behavioral, and brain imaging techniq
A new perspective on brain function depends upon an understanding of the interaction and integration of excitation and inhibition. A recent surge in research activity focused on inhibitory interneurons now makes a more balanced view possible. Technological advances such as improved imaging methods, visualized patch-clamp recording, multiplex single-cell PCR, and gene-targeted deletion or knock-in mice are some of the novel tools featured in this book. This book will provide an integrated view of neuron function, operating in a balanced regime of excitation and inhibition. It is a timely contribution emphasizing how this balance is established, maintained, and modified from the molecular to system levels. The broad spectrum of topics from molecular to cellular and system/computational neuroscience will appeal to a wide audience of advanced graduate students, post-docs, and faculty. Moreover, this book this book features active young researchers from around the world, who are currently educating the brain scientists of tomorrow.
Almost all of the messages that are received by the cerebral cortex from the environment or from the body's internal receptors come through the thalamus and much current thought about perceptual processing is based on sensory pathways that relay in the thalamus. This volume focuses on three major areas: the role of thalamocortical communication in cognition and attention; the role of the thalamus in communication between cortical areas; the hypothesis that much or all of the information relayed by thalamus, even to classical, pure "sensory" areas of cortex, represents a corollary message being sent simultaneously to motor centers. It presents a broad overview of important recent advances in these areas. * Provides a look at brain structures involved in perception and action * Includes summaries by leading investigators in the field * Presents recent advances in our understanding of brain functions