Download Free Exchangeability In Probability And Statistics Book in PDF and EPUB Free Download. You can read online Exchangeability In Probability And Statistics and write the review.

A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.
Statisticians and philosophers of science have many common interests but restricted communication with each other. This volume aims to remedy these shortcomings. It provides state-of-the-art research in the area of philosophy of statistics by encouraging numerous experts to communicate with one another without feeling "restricted by their disciplines or thinking "piecemeal in their treatment of issues. A second goal of this book is to present work in the field without bias toward any particular statistical paradigm. Broadly speaking, the essays in this Handbook are concerned with problems of induction, statistics and probability. For centuries, foundational problems like induction have been among philosophers' favorite topics; recently, however, non-philosophers have increasingly taken a keen interest in these issues. This volume accordingly contains papers by both philosophers and non-philosophers, including scholars from nine academic disciplines. - Provides a bridge between philosophy and current scientific findings - Covers theory and applications - Encourages multi-disciplinary dialogue
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Sample Text
In the sixteenth and seventeenth centuries, gamblers and mathematicians transformed the idea of chance from a mystery into the discipline of probability, setting the stage for a series of breakthroughs that enabled or transformed innumerable fields, from gambling, mathematics, statistics, economics, and finance to physics and computer science. This book tells the story of ten great ideas about chance and the thinkers who developed them, tracing the philosophical implications of these ideas as well as their mathematical impact.
Bruno de Finetti (1906–1985) is the founder of the subjective interpretation of probability, together with the British philosopher Frank Plumpton Ramsey. His related notion of “exchangeability” revolutionized the statistical methodology. This book (based on a course held in 1979) explains in a language accessible also to non-mathematicians the fundamental tenets and implications of subjectivism, according to which the probability of any well specified fact F refers to the degree of belief actually held by someone, on the ground of her whole knowledge, on the truth of the assertion that F obtains.
This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critical re-examination of controversial issues. The level of mathematics used is such that most material is accessible to readers with knowledge of advanced calculus. In particular, no knowledge of abstract measure theory is assumed, and the emphasis throughout is on statistical concepts rather than rigorous mathematics. The book will be an ideal source for all students and researchers in statistics, mathematics, decision analysis, economic and business studies, and all branches of science and engineering, who wish to further their understanding of Bayesian statistics
This is the first comprehensive treatment of the three basic symmetries of probability theory—contractability, exchangeability, and rotatability—defined as invariance in distribution under contractions, permutations, and rotations. Originating with the pioneering work of de Finetti from the 1930's, the theory has evolved into a unique body of deep, beautiful, and often surprising results, comprising the basic representations and invariance properties in one and several dimensions, and exhibiting some unexpected links between the various symmetries as well as to many other areas of modern probability. Most chapters require only some basic, graduate level probability theory, and should be accessible to any serious researchers and graduate students in probability and statistics. Parts of the book may also be of interest to pure and applied mathematicians in other areas. The exposition is formally self-contained, with detailed references provided for any deeper facts from real analysis or probability used in the book. Olav Kallenberg received his Ph.D. in 1972 from Chalmers University in Gothenburg, Sweden. After teaching for many years at Swedish universities, he moved in 1985 to the US, where he is currently Professor of Mathematics at Auburn University. He is well known for his previous books Random Measures (4th edition, 1986) and Foundations of Modern Probability (2nd edition, 2002) and for numerous research papers in all areas of probability. In 1977, he was the second recipient ever of the prestigious Rollo Davidson Prize from Cambridge University. In 1991–94, he served as the Editor in Chief of Probability Theory and Related Fields. Professor Kallenberg is an elected fellow of the Institute of Mathematical Statistics.