Download Free Evolutionary Paleobiology Of Behavior And Coevolution Book in PDF and EPUB Free Download. You can read online Evolutionary Paleobiology Of Behavior And Coevolution and write the review.

This book is the culmination of many years of research by a scientist renowned for his work in this field. It contains a compilation of the data dealing with the known stratigraphic ranges of varied behaviors, chiefly animal with a few plant and fungal, and coevolved relations. A significant part of the data consists of ``frozen behavior'', i.e. those in which an organism has been preserved while actually ``doing'' something, as contrasted with the interpretations of behavior of an organism deduced from functional morphology, important as the latter may be. The conclusions drawn from this compilation suggest that both behaviors and coevolved relations appear infrequently, following which there is relative fixity of the relation, i.e., two rates of evolution, very rapid and essentially zero. This conclusion complies well with the author's prior conclusion that community evolution followed the same rate pattern. In fact, communities are regarded here, as in large part, expressions of both behavior and coevolved relations, rather than as random aggregates controlled almost wholly by varied, unrelated physical parameters tracked by organisms, i.e., the concept that communities have no biologic reality, being merely statistical abstractions. The book is illustrated throughout with more than 400 photographs and drawings. It will be of interest to ethologists, evolutionists, parasitologists, paleontologists, and palaeobiologists at research and post-graduate levels.
In this complete and thorough update of Arthur Boucot's seminal work, Evolutionary Paleobiology of Behavior and Coevolution, Boucot is joined by George Poinar, who provides additional expertise and knowledge on protozoans and bacteria as applied to disease. Together, they make the Fossil Behavior Compendium wider in scope, covering all relevant ani
Representing the state of the art in evolutionary paleobiology, this book provides a much-needed overview of this rapidly changing field. An influx of ideas and techniques both from other areas of biology and from within paleobiology itself have resulted in numerous recent advances, including increased recognition of the relationships between ecological and evolutionary theory, renewed vigor in the study of ecological communities over geologic timescales, increased understanding of biogeographical patterns, and new mathematical approaches to studying the form and structure of plants and animals. Contributors to this volume—a veritable who's who of eminent researchers—present the results of original research and new theoretical developments, and provide directions for future studies. Individually wide ranging, these papers all share a debt to the work of James W. Valentine, one of the founders of modern evolutionary paleobiology. This volume's unified approach to the study of life on earth will be a major contribution to paleobiology, evolution, and ecology.
This two-volume edited book highlights and reviews the potential of the fossil record to calibrate the origin and evolution of parasitism, and the techniques to understand the development of parasite-host associations and their relationships with environmental and ecological changes. The book deploys a broad and comprehensive approach, aimed at understanding the origins and developments of various parasite groups, in order to provide a wider evolutionary picture of parasitism as part of biodiversity. This is in contrast to most contributions by parasitologists in the literature that focus on circular lines of evidence, such as extrapolating from current host associations or distributions, to estimate constraints on the timing of the origin and evolution of various parasite groups. This approach is narrow and fails to provide the wider evolutionary picture of parasitism on, and as part of, biodiversity. Volume one focuses on identifying parasitism in the fossil record, and sheds light on the distribution and ecological importance of parasite-host interactions over time. In order to better understand the evolutionary history of parasites and their relationship with changes in the environment, emphasis is given to viruses, bacteria, protists and multicellular eukaryotes as parasites. Particular attention is given to fungi and metazoans such as bivalves, cnidarians, crustaceans, gastropods, helminths, insects, mites and ticks as parasites. Researchers, specifically evolutionary (paleo)biologists and parasitologists, interested in the evolutionary history of parasite-host interactions as well as students studying parasitism will find this book appealing.
The Behavior of Animals An updated view of animal behavior studies, featuring global experts The Behavior of Animals, Second Edition provides a broad overview of the current state of animal behavior studies with contributions from international experts. This edition includes new chapters on hormones and behavior, individuality, and human evolution. All chapters have been thoroughly revised and updated, and are supported by color illustrations, informative callouts, and accessible presentation of technical information. Provides an introduction to the study of animal behavior Looks at an extensive scope of topics- from perception, motivation and emotion, biological rhythms, and animal learning to animal cognition, communication, mate choice, and individuality. Explores the evolution of animal behavior including a critical evaluation of the assumption that human beings can be studied as if they were any other animal species. Students will benefit from an updated textbook in which a variety of contributors provide their expertise and global perspective in specialized areas
Documents morphology, taxonomy, phylogeny, evolutionary changes, and interactions of 23 orders of insects from the Middle Jurassic and Early Cretaceous faunas in Northern China This book showcases 23 different orders of insect fossils from the Mid Mesozoic period (165 to 125 Ma) that were discovered in Northeastern China. It covers not only their taxonomy and morphology, but also their potential implications on natural sciences, such as phylogeny, function, interaction, evolution, and ecology. It covers fossil sites; paleogeology; co-existing animals and plants in well-balanced eco-systems; insects in the spotlight; morphological evolution and functional development; and interactions of insects with co-existing plants, vertebrates, and other insects. The book also includes many elegant and beautiful photographs, line drawings, and 3-D reconstructions of fossilized and extant insects. Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China features chapter coverage of such insects as the: Ephemeroptera; Odonata; Blattaria; Isoptera; Orthoptera; Notoptera; Dermaptera; Chresmodidae; Phasmatodea; Plecoptera; Psocoptera; Homoptera; Heteroptera; Megaloptera; Raphidioptera; Neuroptera; Coleoptera; Hymenoptera Diptera; Mecoptera; Siphonaptera; Trichoptera and Lepidoptera. Combines academic natural science, popular science, and artistic presentation to illustrate rhythms of evolution for fossil insects from the Mid Mesozoic of Northern China Documents morphology, taxonomy, phylogeny, and evolutionary changes of 23 orders of insects from the Middle Jurassic and Early Cretaceous faunas in Northern China Presents interactions of insects with plants, vertebrates, and other insects based on well-preserved fossil evidence Uses photos of extant insects and plants, fossil and amber specimens, line drawings, and 3-D computer-generated reconstruction artworks to give readers clear and enjoyable impressions of the scientific findings Introduces insect-related stories from western and Chinese culture in text or sidebars to give global readers broader exposures Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China will appeal to entomologists, evolutionists, paleontologists, paleoecologists, and natural scientists.
After volume 33, this book series was replaced by the journal "Evolutionary Biology." Please visit www.springer.com/11692 for further information. The current volume includes articles on the conceptual relationship of ontogeny, phylogeny, and classification; correlation studies of spatial patterns of genetic variation; and the evolution of flower display and reward.
Breathtaking in scope, this is the first survey of the entire ecological history of life on land—from the earliest traces of terrestrial organisms over 400 million years ago to the beginning of human agriculture. By providing myriad insights into the unique ecological information contained in the fossil record, it establishes a new and ambitious basis for the study of evolutionary paleoecology of land ecosystems. A joint undertaking of the Evolution of Terrestrial Ecosystems Consortium at the National Museum of Natural History, Smithsonian Institution, and twenty-six additional researchers, this book begins with four chapters that lay out the theoretical background and methodology of the science of evolutionary paleoecology. Included are a comprehensive review of the taphonomy and paleoenvironmental settings of fossil deposits as well as guidelines for developing ecological characterizations of extinct organisms and the communities in which they lived. The remaining three chapters treat the history of terrestrial ecosystems through geological time, emphasizing how ecological interactions have changed, the rate and tempo of ecosystem change, the role of exogenous "forcing factors" in generating ecological change, and the effect of ecological factors on the evolution of biological diversity. The six principal authors of this volume are all associated with the Evolution of Terrestrial Ecosystems program at the National Museum of Natural History, Smithsonian Institution.
Palaeobiology: A Synthesis was widely acclaimed both for its content and production quality. Ten years on, Derek Briggs and Peter Crowther have once again brought together over 150 leading authorities from around the world to produce Palaeobiology II. Using the same successful formula, the content is arranged as a series of concise articles, taking a thematic approach to the subject, rather than treating the various fossil groups systematically. This entirely new book, with its diversity of new topics and over 100 new contributors, reflects the exciting developments in the field, including accounts of spectacular newly discovered fossils, and embraces data from other disciplines such as astrobiology, geochemistry and genetics. Palaeobiology II will be an invaluable resource, not only for palaeontologists, but also for students and researchers in other branches of the earth and life sciences. Written by an international team of recognised authorities in the field. Content is concise but informative. Demonstrates how palaeobiological studies are at the heart of a range of scientific themes.
A wealth of new information on the diversity, evolution and geochronology of the uniquely complete fossil record of Gran Barranca.