Download Free Evolutionary Multi Task Optimization Book in PDF and EPUB Free Download. You can read online Evolutionary Multi Task Optimization and write the review.

A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain’s ability to generalize in optimization – particularly in population-based evolutionary algorithms – have received little attention to date. Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems, each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks. This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness.
A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain’s ability to generalize in optimization – particularly in population-based evolutionary algorithms – have received little attention to date. Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems, each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks. This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness.
This book constitutes the refereed proceedings of the 11th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2021 held in Shenzhen, China, in March 2021. The 47 full papers and 14 short papers were carefully reviewed and selected from 120 submissions. The papers are divided into the following topical sections: theory; algorithms; dynamic multi-objective optimization; constrained multi-objective optimization; multi-modal optimization; many-objective optimization; performance evaluations and empirical studies; EMO and machine learning; surrogate modeling and expensive optimization; MCDM and interactive EMO; and applications.
This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-and coming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include: optimization in dynamic environments, multi-objective bilevel programming, handling high dimensionality under many objectives, and evolutionary multitasking. In addition to theory and methodology, this book describes several real-world applications from various domains, which will expose the readers to the versatility of evolutionary multi-objective optimization.
The vast majority of real-world problems can be expressed as an optimisation task by formulating an objective function, also known as cost or fitness function. The most logical methods to optimise such a function when (1) an analytical expression is not available, (2) mathematical hypotheses do not hold, and (3) the dimensionality of the problem or stringent real-time requirements make it infeasible to find an exact solution mathematically are from the field of Evolutionary Computation (EC) and Swarm Intelligence (SI). The latter are broad and still growing subjects in Computer Science in the study of metaheuristic approaches, i.e., those approaches which do not make any assumptions about the problem function, inspired from natural phenomena such as, in the first place, the evolution process and the collaborative behaviours of groups of animals and communities, respectively. This book contains recent advances in the EC and SI fields, covering most themes currently receiving a great deal of attention such as benchmarking and tunning of optimisation algorithms, their algorithm design process, and their application to solve challenging real-world problems to face large-scale domains.
Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.
This book constitutes the refereed proceedings of the 12th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2022 held in Leiden, The Netherlands, during March 20-24, 2023. The 44 regular papers presented in this book were carefully reviewed and selected from 65 submissions. The papers are divided into the following topical sections: Algorithm Design and Engineering; Machine Learning and Multi-criterion Optimization; Benchmarking and Performance Assessment; Indicator Design and Complexity Analysis; Applications in Real World Domains; and Multi-Criteria Decision Making and Interactive Algorithms..
Presents current developments in the field of evolutionary scheduling and demonstrates the applicability of evolutionary computational techniques to solving scheduling problems This book provides insight into the use of evolutionary computations (EC) in real-world scheduling, showing readers how to choose a specific evolutionary computation and how to validate the results using metrics and statistics. It offers a spectrum of real-world optimization problems, including applications of EC in industry and service organizations such as healthcare scheduling, aircraft industry, school timetabling, manufacturing systems, and transportation scheduling in the supply chain. It also features problems with different degrees of complexity, practical requirements, user constraints, and MOEC solution approaches. Evolutionary Computation in Scheduling starts with a chapter on scientometric analysis to analyze scientific literature in evolutionary computation in scheduling. It then examines the role and impacts of ant colony optimization (ACO) in job shop scheduling problems, before presenting the application of the ACO algorithm in healthcare scheduling. Other chapters explore task scheduling in heterogeneous computing systems and truck scheduling using swarm intelligence, application of sub-population scheduling algorithm in multi-population evolutionary dynamic optimization, task scheduling in cloud environments, scheduling of robotic disassembly in remanufacturing using the bees algorithm, and more. This book: Provides a representative sampling of real-world problems currently being tackled by practitioners Examines a variety of single-, multi-, and many-objective problems that have been solved using evolutionary computations, including evolutionary algorithms and swarm intelligence Consists of four main parts: Introduction to Scheduling Problems, Computational Issues in Scheduling Problems, Evolutionary Computation, and Evolutionary Computations for Scheduling Problems Evolutionary Computation in Scheduling is ideal for engineers in industries, research scholars, advanced undergraduates and graduate students, and faculty teaching and conducting research in Operations Research and Industrial Engineering.