Download Free Evolutionary Art And Computers Book in PDF and EPUB Free Download. You can read online Evolutionary Art And Computers and write the review.

This book is a unique insight by two of the foremost collaborators in the controversial field of human-machine creativity--which fuses modern art, mathematics, computers, and evolution.
"Evolutionary Design By Computers offers an enticing preview of the future of computer-aided design: Design by Darwin." Lawrence J. Fogel, President, Natural Selection, Inc. "Evolutionary design by computers is the major revolution in design thinking of the 20th century and this book is the best introduction available." Professor John Frazer, Swire Chair and Head of School of Design, the Hong Kong Polytechnic University, Author of "An Evolutionary Architecture" "Peter Bentley has assembled and edited an important collection of papers that demonstrate, convincingly, the utility of evolutionary computation for engineering solutions to complex problems in design." David B. Fogel, Editor-in-Chief, IEEE Transactions on Evolutionary Computation Some of the most startling achievements in the use of computers to automate design are being accomplished by the use of evolutionary search algorithms to evolve designs. Evolutionary Design By Computers provides a showcase of the best and most original work of the leading international experts in Evolutionary Computation, Engineering Design, Computer Art, and Artificial Life. By bringing together the highest achievers in these fields for the first time, including a foreword by Richard Dawkins, this book provides the definitive coverage of significant developments in Evolutionary Design. This book explores related sub-areas of Evolutionary Design, including: design optimization creative design the creation of art artificial life. It shows for the first time how techniques in each area overlap, and promotes the cross-fertilization of ideas and methods.
The use of evolution for creative problem solving is one of the most exciting and potentially significant areas in computer science today. Evolutionary computation is a way of solving problems, or generating designs, using mechanisms derived from natural evolution. This book concentrates on applying important ideas in evolutionary computation to creative areas, such as art, music, architecture, and design. It shows how human interaction, new representations, and approaches such as open-ended evolution can extend the capabilities of evolutionary computation from optimization of existing solutions to innovation and the generation of entirely new and original solutions. This book takes a fresh look at creativity, exploring what it is and how the actions of evolution can resemble it. Examples of novel evolved solutions are presented in a variety of creative disciplines. The editors have compiled contributions by leading researchers in each discipline. If you are a savvy and curious computing professional, a computer-literate artist, musician or designer, or a specialist in evolutionary computation and its applications, you will find this a fascinating survey of the most interesting work being done in the area today.* Explores the use of evolutionary computation to generate novel creations including contemporary melodies, photo-realistic faces, jazz music in collaboration with a human composer, architectural designs, working electronic circuits, novel aircraft maneuvers, two- and three-dimensional art, and original proteins.* Presents resulting designs in black-and-white and color illustrations.* Includes a twin-format audio/CD-ROM with evolved music and hands-on activities for the reader, including evolved images, animations, and source-code related to the text.* Describes in full the methods used so that readers with sufficient skill and interest can replicate the work and extend it.* Is written for a general computer science audience, providing coherent and unified treatment across multiple disciplines.
The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
A clear and comprehensive introduction to the field of evolutionary computation that takes an integrated approach. Evolutionary computation, the use of evolutionary systems as computational processes for solving complex problems, is a tool used by computer scientists and engineers who want to harness the power of evolution to build useful new artifacts, by biologists interested in developing and testing better models of natural evolutionary systems, and by artificial life scientists for designing and implementing new artificial evolutionary worlds. In this clear and comprehensive introduction to the field, Kenneth De Jong presents an integrated view of the state of the art in evolutionary computation. Although other books have described such particular areas of the field as genetic algorithms, genetic programming, evolution strategies, and evolutionary programming, Evolutionary Computation is noteworthy for considering these systems as specific instances of a more general class of evolutionary algorithms. This useful overview of a fragmented field is suitable for classroom use or as a reference for computer scientists and engineers.
Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation. Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo search, and multiobjective optimization and many applications. These reviews and chapters not only provide a timely snapshot of the state-of-art developments, but also provide inspiration for young researchers to carry out potentially ground-breaking research in the active, diverse research areas in artificial intelligence, cryptography, machine learning, evolutionary computation, and nature-inspired metaheuristics. This edited book can serve as a timely reference for graduates, researchers and engineers in artificial intelligence, computer sciences, computational intelligence, soft computing, optimization, and applied sciences.
The development of the use of computers and software in art from the Fifties to the present is explained. As general aspects of the history of computer art an interface model and three dominant modes to use computational processes (generative, modular, hypertextual) are presented. The "History of Computer Art" features examples of early developments in media like cybernetic sculptures, computer graphics and animation (including music videos and demos), video and computer games, reactive installations, virtual reality, evolutionary art and net art. The functions of relevant art works are explained more detailed than usual in such histories.
This book explains the theory and application of evolutionary computer vision, a new paradigm where challenging vision problems can be approached using the techniques of evolutionary computing. This methodology achieves excellent results for defining fitness functions and representations for problems by merging evolutionary computation with mathematical optimization to produce automatic creation of emerging visual behaviors. In the first part of the book the author surveys the literature in concise form, defines the relevant terminology, and offers historical and philosophical motivations for the key research problems in the field. For researchers from the computer vision community, he offers a simple introduction to the evolutionary computing paradigm. The second part of the book focuses on implementing evolutionary algorithms that solve given problems using working programs in the major fields of low-, intermediate- and high-level computer vision. This book will be of value to researchers, engineers, and students in the fields of computer vision, evolutionary computing, robotics, biologically inspired mechatronics, electronics engineering, control, and artificial intelligence.
Reflecting the dynamic creativity of its subject, this definitive guide spans the evolution, aesthetics, and practice of today’s digital art, combining fresh, emerging perspectives with the nuanced insights of leading theorists. Showcases the critical and theoretical approaches in this fast-moving discipline Explores the history and evolution of digital art; its aesthetics and politics; as well as its often turbulent relationships with established institutions Provides a platform for the most influential voices shaping the current discourse surrounding digital art, combining fresh, emerging perspectives with the nuanced insights of leading theorists Tackles digital art’s primary practical challenges – how to present, document, and preserve pieces that could be erased forever by rapidly accelerating technological obsolescence Up-to-date, forward-looking, and critically reflective, this authoritative new collection is informed throughout by a deep appreciation of the technical intricacies of digital art
The study of the genetic basis for evolution has flourished in this century, as well as our understanding of the evolvability and programmability of biological systems. Genetic algorithms meanwhile grew out of the realization that a computer program could use the biologically-inspired processes of mutation, recombination, and selection to solve hard optimization problems. Genetic and evolutionary programming provide further approaches to a wide variety of computational problems. A synthesis of these experiences reveals fundamental insights into both the computational nature of biological evolution and processes of importance to computer science. Topics include biological models of nucleic acid information processing and genome evolution; molecules, cells, and metabolic circuits that compute logical relationships; the origin and evolution of the genetic code; and the interface with genetic algorithms and genetic and evolutionary programming.