Download Free Evolution Of The Vertebrate Auditory System Book in PDF and EPUB Free Download. You can read online Evolution Of The Vertebrate Auditory System and write the review.

The function of vertebrate hearing is served by a surprising variety of sensory structures in the different groups of fish, amphibians, reptiles, birds, and mammals. This book discusses the origin, specialization, and functional properties of sensory hair cells, beginning with environmental constraints on acoustic systems and addressing in detail the evolutionary history behind modern structure and function in the vertebrate ear. Taking a comparative approach, chapters are devoted to each of the vertebrate groups, outlining the transition to land existence and the further parallel and independent adaptations of amniotic groups living in air. The volume explores in depth the specific properties of hair cells that allowed them to become sensitive to sound and capable of analyzing sounds into their respective frequency components. Evolution of the Vertebrate Auditory System is directed to a broad audience of biologists and clinicians, from the level of advanced undergraduate students to professionals interested in learning more about the evolution, structure, and function of the ear.
The evolution of vertebrate hearing is of considerable interest in the hearing community. However, there has never been a volume that has focused on the paleontological evidence for the evolution of hearing and the ear, especially from the perspective of some of the leading paleontologists and evolutionary biologists in the world. Thus, this volume is totally unique, and takes a perspective that has never been taken before. It brings to the fore some of the most recent discoveries among fossil taxa, which have demonstrated the sort of detailed information that can be derived from the fossil record, illuminating the evolutionary pathways this sensory system has taken and the diversity it had achieved.
Development of Auditory and Vestibular Systems fourth edition presents a global and synthetic view of the main aspects of the development of the stato-acoustic system. Unique to this volume is the joint discussion of two sensory systems that, although close at the embryological stage, present divergences during development and later reveal conspicuous functional differences at the adult stage. This work covers the development of auditory receptors up to the central auditory system from several animal models, including humans. Coverage of the vestibular system, spanning amphibians to effects of altered gravity during development in different species, offers examples of the diversity and complexity of life at all levels, from genes through anatomical form and function to, ultimately, behavior. The new edition of Development of Auditory and Vestibular Systems will continue to be an indispensable resource for beginning scientists in this area and experienced researchers alike. - Full-color figures illustrate the development of the stato-acoustic system pathway - Covers a broad range of species, from drosophila to humans, demonstrating the diversity of morphological development despite similarities in molecular processes involved at the cellular level - Discusses a variety of approaches, from genetic-molecular biology to psychophysics, enabling the investigation of ontogenesis and functional development
Sensory perception: mind and matter aims at a deeper understanding of the many facets of sensory perception and their relations to brain function and cognition. It is an attempt to promote the interdisciplinary discourse between the neurosciences and psychology, which speaks the language of cognitive experiences, and philosophy, which has been thinking about the meaning and origin of consciousness since its beginning. Leading experts contribute to such a discourse by informing the reader about exciting modern developments, both technical and conceptual, and by pointing to the big gaps still to be bridged. The various chapters provide access to scientific research on sensory perception and the mind from a broad perspective, covering a large spectrum of topics which range from the molecular mechanisms at work in sensory cells to the study of the unconscious and to neurophilosophy.
To develop a science of hearing that is intellectu The five-day conference was held at the Mote ally satisfying we must first integrate the diverse, Marine Laboratory in Sarasota, Florida, May - extensive body of comparative research into an 24, 1990. The invited participants came from the evolutionary context. The need for this integra fields of comparative anatomy, physiology, biophys tion, and a conceptual framework in which it could ics, animal behavior, psychophysics, evolutionary be structured, were demonstrated in landmark biology, ontogeny, and paleontology. Before the papers by van Bergeijk in 1967 and Wever in 1974. conference, preliminary manuscripts of the invited However, not since 1965, when the American papers were distributed to all participants. This facilitated - even encouraged - discussions through Society of Zoologists sponsored an evolutionary conference entitled ''The Vertebrate Ear;' has there out the conference which could be called, among other things, "lively. " The preview of papers, along been a group effort to assemble and organize our current knowledge on the evolutionary-as with the free exchange of information and opinion, opposed to comparative-biology of hearing. also helped improve the quality and consistency of In the quarter century since that conference the final manuscripts included in this volume. there have been major changes in evolutionary In addition to the invited papers, several studies concepts (e. g. , punctuated equilibrium), in sys were presented as posters during evening sessions.
The contributors to this volume have provided a detailed and integrated introduction to the behavioural, anatomical, and physiological changes that occur in the auditory system of developing animals. Edwin W Rubel is Virginia Merrill Bloedel Professor of Hearing Sciences at the Virginia Merrill Bloedel Hearing Research Center at the University of Washington, Arthur N. Popper is Professor and Chair of the Department of Zoology at the University of Maryland, while Richard R. Fay is Associate Director of the Parmly Hearing Institute and Professor of Psychology at Loyola University of Chicago. Each volume in this series is independent and authoritative; taken as a set, the series will be the definitive resource in the field.
Comparative Vertebrate Neuroanatomy Evolution and Adaptation Second Edition Ann B. Butler and William Hodos The Second Edition of this landmark text presents a broad survey of comparative vertebrate neuroanatomy at the introductory level, representing a unique contribution to the field of evolutionary neurobiology. It has been extensively revised and updated, with substantially improved figures and diagrams that are used generously throughout the text. Through analysis of the variation in brain structure and function between major groups of vertebrates, readers can gain insight into the evolutionary history of the nervous system. The text is divided into three sections: * Introduction to evolution and variation, including a survey of cell structure, embryological development, and anatomical organization of the central nervous system; phylogeny and diversity of brain structures; and an overview of various theories of brain evolution * Systematic, comprehensive survey of comparative neuroanatomy across all major groups of vertebrates * Overview of vertebrate brain evolution, which integrates the complete text, highlights diversity and common themes, broadens perspective by a comparison with brain structure and evolution of invertebrate brains, and considers recent data and theories of the evolutionary origin of the brain in the earliest vertebrates, including a recently proposed model of the origin of the brain in the earliest vertebrates that has received strong support from newly discovered fossil evidence Ample material drawn from the latest research has been integrated into the text and highlighted in special feature boxes, including recent views on homology, cranial nerve organization and evolution, the relatively large and elaborate brains of birds in correlation with their complex cognitive abilities, and the current debate on forebrain evolution across reptiles, birds, and mammals. Comparative Vertebrate Neuroanatomy is geared to upper-level undergraduate and graduate students in neuroanatomy, but anyone interested in the anatomy of the nervous system and how it corresponds to the way that animals function in the world will find this text fascinating.
Birds and reptiles have long fascinated investigators studying hearing and the auditory system. The highly evolved auditory inner ear of birds and reptiles shares many characteristics with the ear of mammals. Thus, the two groups are essential in understanding the form and function of the vertebrate and mammalian auditory systems. Comparative Hearing: Birds and Reptiles covers the broad range of our knowledge of hearing and acoustic communication in both groups of vertebrates. This volume addresses the many similarities in their auditory systems, as well as the known significant differences about hearing in the two groups.
This book encourages readers to view similarities and differences in various species as fundamental to a comprehensive understanding of nervous systems.
The Springer Handbook of Auditory Research presents a series of compreh- sive and synthetic reviews of the fundamental topics in modern auditory - search. The volumes are aimed at all individuals with interests in hearing research including advanced graduate students, postdoctoral researchers, and clinical investigators. The volumes are intended to introduce new investigators to important aspects of hearing science and to help established investigators to betterunderstandthefundamentaltheoriesanddatain?eldsofhearingthatthey may not normally follow closely. Each volume presents a particular topic comprehensively, and each servesas a synthetic overview and guide to the literature. As such, the chapters present neither exhaustive data reviews nor original research that has not yet appeared in peer-reviewed journals. The volumes focus on topics that have developed a solid data and conceptual foundation rather than on those for which a literature is only beginning to develop. New research areas will be covered on a timely basis in the series as they begin to mature. Eachvolumeintheseriesconsistsofafewsubstantialchaptersonaparticular topic. In some cases, the topics will be ones of traditional interest for which there is a substantial body of data and theory, such as auditory neuroanatomy (Vol. 1) and neurophysiology (Vol. 2). Other volumes in the series deal with topics that have begun to mature more recently, suchasdevelopment,plasticity, and computational models of neural processing. In many cases, the series - itorsarejoinedbyaco-editorhavingspecialexpertiseinthetopicofthevolume.