Download Free Evolution And The Genetics Of Populations Volume 4 Book in PDF and EPUB Free Download. You can read online Evolution And The Genetics Of Populations Volume 4 and write the review.

These volumes discuss evolutionary biology through the lense of population genetics.
This 2004 collection of essays deals with the foundation and historical development of population biology and its relationship to population genetics and population ecology on the one hand and to the rapidly growing fields of molecular quantitative genetics, genomics and bioinformatics on the other. Such an interdisciplinary treatment of population biology has never been attempted before. The volume is set in a historical context, but it has an up-to-date coverage of material in various related fields. The areas covered are the foundation of population biology, life history evolution and demography, density and frequency dependent selection, recent advances in quantitative genetics and bioinformatics, evolutionary case history of model organisms focusing on polymorphisms and selection, mating system evolution and evolution in the hybrid zones, and applied population biology including conservation, infectious diseases and human diversity. This is the third of three volumes published in honour of Richard Lewontin.
The Fourth Edition of Genetics of Populations is the most current, comprehensive, and accessible introduction to the field for advanced undergraduate and graduate students, and researchers in genetics, evolution, conservation, and related fields. In the past several years, interest in the application of population genetics principles to new molecular data has increased greatly, and Dr. Hedrick's new edition exemplifies his commitment to keeping pace with this dynamic area of study. Reorganized to allow students to focus more sharply on key material, the Fourth Edition integrates coverage of theoretical issues with a clear presentation of experimental population genetics and empirical data. Drawing examples from both recent and classic studies, and using a variety of organisms to illustrate the vast developments of population genetics, this text provides students and researchers with the most comprehensive resource in the field.
This textbook shows readers how models of the genetic processes involved in evolution are made (including natural selection, migration, mutation, and genetic drift in finite populations), and how the models are used to interpret classical and molecular genetic data. The material is intended for advanced level undergraduate courses in genetics and evolutionary biology, graduate students in evolutionary biology and human genetics, and researchers in related fields who wish to learn evolutionary genetics. The topics covered include genetic variation, DNA sequence variability and its measurement, the different types of natural selection and their effects (e.g. the maintenance of variation, directional selection, and adaptation), the interactions between selection and mutation or migration, the description and analysis of variation at multiple sites in the genome, genetic drift, and the effects of spatial structure.
The advances made possible by the development of molecular techniques have in recent years revolutionized quantitative genetics and its relevance for population genetics. Population Genetics and Microevolutionary Theory takes a modern approach to population genetics, incorporating modern molecular biology, species-level evolutionary biology, and a thorough acknowledgment of quantitative genetics as the theoretical basis for population genetics. Logically organized into three main sections on population structure and history, genotype-phenotype interactions, and selection/adaptation Extensive use of real examples to illustrate concepts Written in a clear and accessible manner and devoid of complex mathematical equations Includes the author's introduction to background material as well as a conclusion for a handy overview of the field and its modern applications Each chapter ends with a set of review questions and answers Offers helpful general references and Internet links
Loss of biodiversity is among the greatest problems facing the world today. Conservation and the Genetics of Populations gives a comprehensive overview of the essential background, concepts, and tools needed to understand how genetic information can be used to conserve species threatened with extinction, and to manage species of ecological or commercial importance. New molecular techniques, statistical methods, and computer programs, genetic principles, and methods are becoming increasingly useful in the conservation of biological diversity. Using a balance of data and theory, coupled with basic and applied research examples, this book examines genetic and phenotypic variation in natural populations, the principles and mechanisms of evolutionary change, the interpretation of genetic data from natural populations, and how these can be applied to conservation. The book includes examples from plants, animals, and microbes in wild and captive populations. This second edition contains new chapters on Climate Change and Exploited Populations as well as new sections on genomics, genetic monitoring, emerging diseases, metagenomics, and more. One-third of the references in this edition were published after the first edition. Each of the 22 chapters and the statistical appendix have a Guest Box written by an expert in that particular topic (including James Crow, Louis Bernatchez, Loren Rieseberg, Rick Shine, and Lisette Waits). This book is essential for advanced undergraduate and graduate students of conservation genetics, natural resource management, and conservation biology, as well as professional conservation biologists working for wildlife and habitat management agencies. Additional resources for this book can be found at: www.wiley.com/go/allendorf/populations.
At a glance, most species seem adapted to the environment in which they live. Yet species relentlessly evolve, and populations within species evolve in different ways. Evolution, as it turns out, is much more dynamic than biologists realized just a few decades ago. In Relentless Evolution, John N. Thompson explores why adaptive evolution never ceases and why natural selection acts on species in so many different ways. Thompson presents a view of life in which ongoing evolution is essential and inevitable. Each chapter focuses on one of the major problems in adaptive evolution: How fast is evolution? How strong is natural selection? How do species co-opt the genomes of other species as they adapt? Why does adaptive evolution sometimes lead to more, rather than less, genetic variation within populations? How does the process of adaptation drive the evolution of new species? How does coevolution among species continually reshape the web of life? And, more generally, how are our views of adaptive evolution changing? Relentless Evolution draws on studies of all the major forms of life—from microbes that evolve in microcosms within a few weeks to plants and animals that sometimes evolve in detectable ways within a few decades. It shows evolution not as a slow and stately process, but rather as a continual and sometimes frenetic process that favors yet more evolutionary change.
One of this century's leading evolutionary biologists, Motoo Kimura revolutionized the field with his random drift theory of molecular evolution—the neutral theory—and his groundbreaking theoretical work in population genetics. This volume collects 57 of Kimura's most important papers and covers forty years of his diverse and original contributions to our understanding of how genetic variation affects evolutionary change. Kimura's neutral theory, first presented in 1968, challenged the notion that natural selection was the sole directive force in evolution. Arguing that mutations and random drift account for variations at the level of DNA and amino acids, Kimura advanced a theory of evolutionary change that was strongly challenged at first and that eventually earned the respect and interest of evolutionary biologists throughout the world. This volume includes the seminal papers on the neutral theory, as well as many others that cover such topics as population structure, variable selection intensity, the genetics of quantitative characters, inbreeding systems, and reversibility of changes by random drift. Background essays by Naoyuki Takahata examine Kimura's work in relation to its effects and recent developments in each area.
This book explores the shift from hunting and gathering to agriculture as a way of life and the implications of this neolithic transition for the genetic structure of European populations. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.