Download Free Evolution And Plants Of The Past Book in PDF and EPUB Free Download. You can read online Evolution And Plants Of The Past and write the review.

Although plants comprise more than 90% of all visible life, and land plants and algae collectively make up the most morphologically, physiologically, and ecologically diverse group of organisms on earth, books on evolution instead tend to focus on animals. This organismal bias has led to an incomplete and often erroneous understanding of evolutionary theory. Because plants grow and reproduce differently than animals, they have evolved differently, and generally accepted evolutionary views—as, for example, the standard models of speciation—often fail to hold when applied to them. Tapping such wide-ranging topics as genetics, gene regulatory networks, phenotype mapping, and multicellularity, as well as paleobotany, Karl J. Niklas’s Plant Evolution offers fresh insight into these differences. Following up on his landmark book The Evolutionary Biology of Plants—in which he drew on cutting-edge computer simulations that used plants as models to illuminate key evolutionary theories—Niklas incorporates data from more than a decade of new research in the flourishing field of molecular biology, conveying not only why the study of evolution is so important, but also why the study of plants is essential to our understanding of evolutionary processes. Niklas shows us that investigating the intricacies of plant development, the diversification of early vascular land plants, and larger patterns in plant evolution is not just a botanical pursuit: it is vital to our comprehension of the history of all life on this green planet.
This exciting new textbook examines the concepts of evolution as the underlying cause of the rich diversity of life on earth-and our danger of losing that rich diversity. Written as a college textbook, The Diversity and Evolution of Plants introduces the great variety of life during past ages, manifested by the fossil record, using a new natural classification system. It begins in the Proterozoic Era, when bacteria and bluegreen algae first appeared, and continues through the explosions of new marine forms in the Helikian and Hadrynian Periods, land plants in the Devonian, and flowering plants in the Cretaceous. Following an introduction, the three subkingdoms of plants are discussed. Each chapter covers one of the eleven divisions of plants and begins with an interesting vignette of a plant typical of that division. A section on each of the classes within the division follows. Each section describes where the groups of plants are found and their distinguishing features. Discussions in each section include phylogeny and classification, general morphology, and physiology, ecological significance, economic uses, and potential for research. Suggested readings and student exercises are found at the end of each chapter.
The genetic variability that developed in plants during their evolution is the basic of their domestication and breeding into the crops grown today for food, fuel and other industrial uses. This third edition of Plant Evolution and the Origin of Crop Species brings the subject up-to-date, with more emphasis on crop origins. Beginning with a description of the processes of evolution in native and cultivated plants, the book reviews the origins of crop domestication and their subsequent development over time. All major crop species are discussed, including cereals, protein plants, starch crops, fruits and vegetables, from their origins to conservation of their genetic resources for future development.
This is a broad but provocative examination of the evolution of plants from the earliest forms of life to the development of our present flora. Taking a fresh, modern approach to a subject often treated very stuffily, the book incorporates many recent studies on the morphological evolution of plants, enlivens the subject with current research on ancient DNA and other biomolecular markers, and places plant evolution in the context of climate change and mass extinction. Also includes special Biome Maps, showing the flora on the Earth's surface at different geological ages. Written for a non-specialist audience.
"The present book is intended as a progress report on [the] synthetic approach to evolution as it applies to the plant kingdom." With this simple statement, G. Ledyard Stebbins formulated the objectives of Variation and Evolution in Plants, published in 1950, setting forth for plants what became known as the "synthetic theory of evolution" or "the modern synthesis." The pervading conceit of the book was the molding of Darwin's evolution by natural selection within the framework of rapidly advancing genetic knowledge. At the time, Variation and Evolution in Plants significantly extended the scope of the science of plants. Plants, with their unique genetic, physiological, and evolutionary features, had all but been left completely out of the synthesis until that point. Fifty years later, the National Academy of Sciences convened a colloquium to update the advances made by Stebbins. This collection of 17 papers marks the 50th anniversary of the publication of Stebbins' classic. Organized into five sections, the book covers: early evolution and the origin of cells, virus and bacterial models, protoctist models, population variation, and trends and patterns in plant evolution.
Book published on the occasion of exhibition at Shirley Sherwood Gallery of Botanical Art at Royal Botanic Gardens, Kew, in 2009.
Provides a comprehensive synthesis of modern evolutionary biology as it relates to plants. This text recounts the saga of plant life from its origins to the radiation of the flowering plants. Through computer-generated "walks" it shows how living plants might have evolved.
A Natural History of the New World traces the evolution of plant ecosystems, beginning in the Late Cretaceous period and ending in the present, charting their responses to changes in geology and climate.
This beautifully illustrated book follows the amazing story of plant evolution, from the first plants arriving on a dark and lifeless planet to the colorful—often weird and wonderful—world of today’s varied and vibrant plant life.
The recent discovery of diverse fossil flowers and floral organs in Cretaceous strata has revealed astonishing details about the structural and systematic diversity of early angiosperms. Exploring the rich fossil record that has accumulated over the last three decades, this is a unique study of the evolutionary history of flowering plants from their earliest phases in obscurity to their dominance in modern vegetation. The discussion provides comprehensive biological and geological background information, before moving on to summarise the fossil record in detail. Including previously unpublished results based on research into Early and Late Cretaceous fossil floras from Europe and North America, the authors draw on direct palaeontological evidence of the pattern of angiosperm evolution through time. Synthesising palaeobotanical data with information from living plants, this unique book explores the latest research in the field, highlighting connections with phylogenetic systematics, structure and the biology of extant angiosperms.