Download Free Evo Devo Non Model Species In Cell And Developmental Biology Book in PDF and EPUB Free Download. You can read online Evo Devo Non Model Species In Cell And Developmental Biology and write the review.

Evolutionary developmental biology or evo-devo is a field of biological research that compares the underlying mechanisms of developmental processes in different organisms to infer the ancestral condition of these processes and elucidate how they have evolved. It addresses questions about the developmental bases of evolutionary changes and evolution of developmental processes. The book’s content is divided into three parts, the first of which discusses the theoretical background of evo-devo. The second part highlights new and emerging model organisms in the evo-devo field, while the third and last part explores the evo-devo approach in a broad comparative context. To the best of our knowledge, no other book combines these three evo-devo aspects: theoretical considerations, a comprehensive list of emerging model species, and comparative analyses of developmental processes. Given its scope, the book will offer readers a new perspective on the natural diversity of processes at work in cells and during the development of various animal groups, and expand the horizons of seasoned and young researchers alike.
Covering more than 50 central terms and concepts in entries written by leading experts, this book offers an overview of this new subdiscipline of biology, providing the core insights and ideas that show how embryonic development relates to life-history evolution, adaptation, and responses to and integration with environmental factors.
As described in this fascinating book, Evo Devo is evolutionary development biology, the third revolution in the science, which shows how the endless forms of animals--butterflies and zebras, trilobites and dinosaurs, apes and humans--were made and evolved.
This reference work provides an comprehensive and easily accessible source of information on numerous aspects of Evolutionary Developmental Biology. The work provides an extended overview on the current state of the art of this interdisciplinary and dynamic scientific field. The work is organized in thematic sections, referring to the specific requirements and interests in each section in far detail. “Evolutionary Developmental Biology – A Reference Guide” is intended to provide a resource of knowledge for researchers engaged in evolutionary biology, developmental biology, theoretical biology, philosophy of sciences and history of biology.
Evolutionary developmental biology, or 'evo-devo', is the study of the relationship between evolution and development. Dealing specifically with the generative mechanisms of organismal form, evo-devo goes straight to the core of the developmental origin of variation, the raw material on which natural selection (and random drift) can work. Evolving Pathways brings together contributions that represent a diversity of approaches. Topics range from developmental genetics to comparative morphology of animals and plants alike, and also include botany and palaeontology, two disciplines for which the potential to be examined from an evo-devo perspective has largely been ignored until now. Researchers and graduate students will find this book a valuable overview of current research as we begin to fill a major gap in our perception of evolutionary change.
Modularity in Development and Evolution offers the first sustained exploration of modules from developmental and evolutionary perspectives. Contributors discuss what modularity is, how it can be identified and modeled, how it originated and evolved, and its biological significance. Covering modules at levels ranging from genes to colonies, the book focuses on their roles not just in structures but also in processes such as gene regulation. Among many exciting findings, the contributors demonstrate how modules can highlight key constraints on evolutionary processes. A timely synthesis of a crucial topic, Modularity in Development and Evolution shows the invaluable insights modules can give into both developmental complexities and their evolutionary origins.
Plant Development and Evolution, the latest release in the Current Topics in Developmental Biology series, highlights new advances in the field, with this new volume presenting interesting chapters on the Evolution of the plant body plan, Lateral root development and its role in evolutionary adaptation, the Development of the vascular system, the Development of the shoot apical meristem and phyllotaxis, the Evolution of leaf diversity, the Evolution of regulatory networks in land plants, The role of programed cell death in plant development, the Development and evolution of inflorescence architecture, the Molecular regulation of flower development, the Pre-meiotic another development, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Current Topics in Developmental Biology series - Updated release includes the latest information on Plant Development and Evolution
An enduring controversy in evolutionary biology is the genetic basis of adaptation. Darwin emphasized "many slight differences" as the ultimate source of variation to be acted upon by natural selection. In the early 1900’s, this view was opposed by "Mendelian geneticists", who emphasized the importance of "macromutations" in evolution. The Modern Synthesis resolved this controversy, concluding that mutations in genes of very small effect were responsible for adaptive evolution. A decade ago, Allen Orr and Jerry Coyne reexamined the evidence for this neo-Darwinian view and found that both the theoretical and empirical basis for it were weak. Orr and Coyne encouraged evolutionary biologists to reexamine this neglected question: what is the genetic basis of adaptive evolution? In this volume, a new generation of biologists have taken up this challenge. Using advances in both molecular genetic and statistical techniques, evolutionary geneticists have made considerable progress in this emerging field. In this volume, a diversity of examples from plant and animal studies provides valuable information for those interested in the genetics and evolution of complex traits.
This Element presents a philosophical exploration of the concept of the 'model organism' in contemporary biology. Thinking about model organisms enables us to examine how living organisms have been brought into the laboratory and used to gain a better understanding of biology, and to explore the research practices, commitments, and norms underlying this understanding. We contend that model organisms are key components of a distinctive way of doing research. We focus on what makes model organisms an important type of model, and how the use of these models has shaped biological knowledge, including how model organisms represent, how they are used as tools for intervention, and how the representational commitments linked to their use as models affect the research practices associated with them. This title is available as Open Access on Cambridge Core.