Download Free Evidence Decision And Causality Book in PDF and EPUB Free Download. You can read online Evidence Decision And Causality and write the review.

This open access book is a unique resource for health professionals who are interested in understanding the philosophical foundations of their daily practice. It provides tools for untangling the motivations and rationality behind the way medicine and healthcare is studied, evaluated and practiced. In particular, it illustrates the impact that thinking about causation, complexity and evidence has on the clinical encounter. The book shows how medicine is grounded in philosophical assumptions that could at least be challenged. By engaging with ideas that have shaped the medical profession, clinicians are empowered to actively take part in setting the premises for their own practice and knowledge development. Written in an engaging and accessible style, with contributions from experienced clinicians, this book presents a new philosophical framework that takes causal complexity, individual variation and medical uniqueness as default expectations for health and illness.
An explanation and defence of evidential decision theory, which emphasises the symptomatic value of options over their causal role.
Since 1938 and 1941, nutrient intake recommendations have been issued to the public in Canada and the United States, respectively. Currently defined as the Dietary Reference Intakes (DRIs), these values are a set of standards established by consensus committees under the National Academies of Sciences, Engineering, and Medicine and used for planning and assessing diets of apparently healthy individuals and groups. In 2015, a multidisciplinary working group sponsored by the Canadian and U.S. government DRI steering committees convened to identify key scientific challenges encountered in the use of chronic disease endpoints to establish DRI values. Their report, Options for Basing Dietary Reference Intakes (DRIs) on Chronic Disease: Report from a Joint US-/Canadian-Sponsored Working Group, outlined and proposed ways to address conceptual and methodological challenges related to the work of future DRI Committees. This report assesses the options presented in the previous report and determines guiding principles for including chronic disease endpoints for food substances that will be used by future National Academies committees in establishing DRIs.
Evidential Decision Theory is a radical theory of rational decision-making. It recommends that instead of thinking about what your decisions *cause*, you should think about what they *reveal*. This Element explains in simple terms why thinking in this way makes a big difference, and argues that doing so makes for *better* decisions. An appendix gives an intuitive explanation of the measure-theoretic foundations of Evidential Decision Theory.
This book is Ellery Eells' influential examination and analysis of theories of rational decision making.
In this important first book in the series Cambridge Studies in Probability, Induction and Decision Theory, Ellery Eells explores and refines current philosophical conceptions of probabilistic causality. In a probabilistic theory of causation, causes increase the probability of their effects rather than necessitate their effects in the ways traditional deterministic theories have specified. Philosophical interest in this subject arises from attempts to understand population sciences as well as indeterminism in physics. Taking into account issues involving spurious correlation, probabilistic causal interaction, disjunctive causal factors, and temporal ideas, Professor Eells advances the analysis of what it is for one factor to be a positive causal factor for another. A salient feature of the book is a new theory of token level probabilistic causation in which the evolution of the probability of a later event from an earlier event is central.
Causal reasoning is one of our most central cognitive competencies, enabling us to adapt to our world. Causal knowledge allows us to predict future events, or diagnose the causes of observed facts. We plan actions and solve problems using knowledge about cause-effect relations. Without our ability to discover and empirically test causal theories, we would not have made progress in various empirical sciences. The handbook brings together the leading researchers in the field of causal reasoning and offers state-of-the-art presentations of theories and research. It provides introductions of competing theories of causal reasoning, and discusses its role in various cognitive functions and domains. The final section presents research from neighboring fields.
A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.
A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book: Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addresses examples from medicine, biology, economics and political science to aid the reader's understanding. Is authored by leading experts in their field. Is written in an accessible style. Postgraduates, professional statisticians and researchers in academia and industry will benefit from this book.
In The Art of Causal Conjecture, Glenn Shafer lays out a new mathematical and philosophical foundation for probability and uses it to explain concepts of causality used in statistics, artificial intelligence, and philosophy. The various disciplines that use causal reasoning differ in the relative weight they put on security and precision of knowledge as opposed to timeliness of action. The natural and social sciences seek high levels of certainty in the identification of causes and high levels of precision in the measurement of their effects. The practical sciences -- medicine, business, engineering, and artificial intelligence -- must act on causal conjectures based on more limited knowledge. Shafer's understanding of causality contributes to both of these uses of causal reasoning. His language for causal explanation can guide statistical investigation in the natural and social sciences, and it can also be used to formulate assumptions of causal uniformity needed for decision making in the practical sciences. Causal ideas permeate the use of probability and statistics in all branches of industry, commerce, government, and science. The Art of Causal Conjecture shows that causal ideas can be equally important in theory. It does not challenge the maxim that causation cannot be proven from statistics alone, but by bringing causal ideas into the foundations of probability, it allows causal conjectures to be more clearly quantified, debated, and confronted by statistical evidence.