Download Free Evariste Galois 1811 1832 Book in PDF and EPUB Free Download. You can read online Evariste Galois 1811 1832 and write the review.

Evariste Galois' short life was lived against the turbulent background of the restoration of the Bourbons to the throne of France, the 1830 revolution in Paris and the accession of Louis-Phillipe. This new and scrupulously researched biography of the founder of modern algebra sheds much light on a life led with great intensity and a death met tragically under dark circumstances. Sorting speculation from documented fact, it offers the fullest and most exacting account ever written of Galois' life and work. It took more than seventy years to fully understand the French mathematician's first mémoire (published in 1846) which formulated the famous "Galois theory" concerning the solvability of algebraic equations by radicals, from which group theory would follow. Obscurities in his other writings - mémoires and numerous fragments of extant papers - persist and his ideas challenge mathematicians to this day. Thus scholars will welcome those chapters devoted specifically to explicating all aspects of Galois' work. A comprehensive bibliography enumerates studies by and also those about the mathematician.
Rich in historical detail and bursting with intellectual passion, this captivating novel describes a genius's valiant quest for truth in post-Napoleon France, a turbulent and uncertain era that in many ways mirrors the world today.
Before he died at the age of twenty, shot in a mysterious early-morning duel at the end of May 1832, Evariste Galois created mathematics that changed the direction of algebra. This book contains English translations of almost all the Galois material. The translations are presented alongside a new transcription of the original French and are enhanced by three levels of commentary. An introduction explains the context of Galois' work, the various publications in which it appears, and the vagaries of his manuscripts. Then there is a chapter in which the five mathematical articles published in his lifetime are reprinted. After that come the testamentary letter and the first memoir (in which Galois expounded on the ideas that led to Galois Theory), which are the most famous of the manuscripts. These are followed by the second memoir and other lesser known manuscripts. This book makes available to a wide mathematical and historical readership some of the most exciting mathematics of the first half of the nineteenth century, presented in its original form. The primary aim is to establish a text of what Galois wrote. The details of what he did, the proper evidence of his genius, deserve to be well understood and appreciated by mathematicians as well as historians of mathematics.
This book is a collection of articles, all by the author, on the Indian mathematical genius Srinivasa Ramanujan as well as on some of the greatest mathematicians throughout the history whose life and works have things in common with Ramanujan. It presents a unique comparative study of Ramanujan’s spectacular discoveries and remarkable life and of the monumental contributions of various mathematical luminaries, some of whom, like Ramanujan, overcame great difficulties in life. In the book, some aspects of Ramanujan’s contributions, such as his remarkable formulae for the number pi, his pathbreaking work in the theory of partitions, and his fundamental observations on quadratic forms, are discussed. Finally, the book describes various current efforts to ensure that the legacy of Ramanujan will be preserved and continue to thrive in the future. Thus the book is an enlightening study of Ramanujan as a mathematician and a human being.
Ioan James introduces and profiles sixty mathematicians from the era when mathematics was freed from its classical origins to develop into its modern form. The subjects, all born between 1700 and 1910, come from a wide range of countries, and all made important contributions to mathematics, through their ideas, their teaching, and their influence. James emphasizes their varied life stories, not the details of their mathematical achievements. The book is organized chronologically into ten chapters, each of which contains biographical sketches of six mathematicians. The men and women James has chosen to portray are representative of the history of mathematics, such that their stories, when read in sequence, convey in human terms something of the way in which mathematics developed. Ioan James is a professor at the Mathematical Institute, University of Oxford. He is the author of Topological Topics (Cambridge, 1983), Fibrewise Topology (Cambridge, 1989), Introduction to Uniform Spaces (Cambridge, 1990), Topological and Uniform Spaces (Springer-Verlag New York, 1999), and co-author with Michael C. Crabb of Fibrewise Homotopy Theory (Springer-Verlag New York, 1998). James is the former editor of the London Mathematical Society Lecture Note Series and volume editor of numerous books. He is the organizer of the Oxford Series of Topology symposia and other conferences, and co-chairman of the Task Force for Mathematical Sciences of Campaign for Oxford.
What do Bach's compositions, Rubik's Cube, the way we choose our mates, and the physics of subatomic particles have in common? All are governed by the laws of symmetry, which elegantly unify scientific and artistic principles. Yet the mathematical language of symmetry-known as group theory-did not emerge from the study of symmetry at all, but from an equation that couldn't be solved. For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory. The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.
The ultimate mathematics reference book This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries—written especially for this book by some of the world's leading mathematicians—that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music—and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninety-five mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, cross-references, and a comprehensive index Contributors include: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, and Doron Zeilberger
Mathematical card effects offer both beginning and experienced magicians an opportunity to entertain with a minimum of props. Featuring mostly original creations, Mathematical Card Magic: Fifty-Two New Effects presents an entertaining look at new mathematically based card tricks. Each chapter contains four card effects, generally starting with simple applications of a particular mathematical principle and ending with more complex ones. Practice a handful of the introductory effects and, in no time, you’ll establish your reputation as a "mathemagician." Delve a little deeper into each chapter and the mathematics gets more interesting. The author explains the mathematics as needed in an easy-to-follow way. He also provides additional details, background, and suggestions for further explorations. Suitable for recreational math buffs and amateur card lovers or as a text in a first-year seminar, this color book offers a diverse collection of new mathemagic principles and effects.
The book gives a detailed account of the development of the theory of algebraic equations, from its origins in ancient times to its completion by Galois in the nineteenth century. The appropriate parts of works by Cardano, Lagrange, Vandermonde, Gauss, Abel, and Galois are reviewed and placed in their historical perspective, with the aim of conveying to the reader a sense of the way in which the theory of algebraic equations has evolved and has led to such basic mathematical notions as 'group' and 'field'. A brief discussion of the fundamental theorems of modern Galois theory and complete proofs of the quoted results are provided, and the material is organized in such a way that the more technical details can be skipped by readers who are interested primarily in a broad survey of the theory.In this second edition, the exposition has been improved throughout and the chapter on Galois has been entirely rewritten to better reflect Galois' highly innovative contributions. The text now follows more closely Galois' memoir, resorting as sparsely as possible to anachronistic modern notions such as field extensions. The emerging picture is a surprisingly elementary approach to the solvability of equations by radicals, and yet is unexpectedly close to some of the most recent methods of Galois theory.