Download Free Evaluation Of Procedure To Estimate Subgrade Resilient Modulus For Use In Pavement Structural Design Book in PDF and EPUB Free Download. You can read online Evaluation Of Procedure To Estimate Subgrade Resilient Modulus For Use In Pavement Structural Design and write the review.

Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.
At head of title: National Cooperative Highway Research Program.
Field and laboratory testing programs were conducted to develop models that predict the resilient modulus of subgrade soils from the test results of DCP, CIMCPT, FWD, Dynaflect, and soil properties. The field testing program included DCP, CIMCPT, FWD, and Dynaflect testing, whereas the laboratory program included repeated load triaxial resilient modulus tests and physical properties and compaction tests. Nine overlay rehabilitation pavement projects in Louisiana were selected. A total of four soil types (A-4, A-6, A-7-5, and A-7-6) were considered at different moisture-dry unit weight levels. The results of the laboratory and field testing programs were analyzed and critically evaluated. A comprehensive statistical analysis was conducted on the collected data. The results showed a good agreement between the predicted and measured resilient modulus from the various field test methods considered. The DCP and CIMCPT models were enhanced when the soil moisture content and dry unit weight were incorporated. The results also showed that, among all back calculated FWD moduli, those back calculated using ELMOD 5.1.69 software had the best correlation with the measured Mr. Finally, the Mr values estimated using the approach currently adopted by the LADOTD were found to correlate poorly with the measured Mr values.
One of the primary objectives of the Strategic Highway Research Program Long Term Pavement Performance (SHRP-LTPP) studies is to improve the ability of highway engineers to design new and overlaid pavement structures. The specific analyses discussed in this report were aimed at evaluation of the American Association of State Highway and Transportation Officials (AASHTO) pavement design equations (for both new and overlaid pavements). Initial analyses confirm that although improvements have been made to the AASHTO design equations over the years, the equations still do not fully explain data from North American pavements. Recommendations for the improvement of the design equations are provided; however, the highway community at large supports replacing the limited equations with a comprehensive design system that considers all distress types.
Bituminous Mixtures and Pavements contains 113 accepted papers from the 6th International ConferenceBituminous Mixtures and Pavements (6th ICONFBMP, Thessaloniki, Greece, 10-12 June 2015). The 6th ICONFBMP is organized every four years by the Highway Engineering Laboratory of the Aristotle University of Thessaloniki, Greece, in conjunction with
This book is an outcome of the sixth conference on bearing capacity of roads and airfield held in Lisbon, Portugal. It covers the following topics: bearing capacity policies, concepts, costs and condition surveys; analysis and modelling; design and environmental effects; and asphalt mixtures.
This synthesis report will be of interest to pavement and geotechnical design and research engineers, geologists and engineering geologists, and related laboratory personnel. It describes the current practice for measuring in situ mechanical properties of pavement subgrade soils. The tests conducted to measure the mechanical properties of soil strength and stiffness are the primary topics, and these are discussed in the context of design procedures, factors affecting mechanical properties, and the variability of measurements. Information for the synthesis was collected by surveying U.S., Canadian, and selected European transportation agencies and by conducting a literature search. This TRB report provides information on existing and emerging technologies for static and dynamic, and destructive and nondestructive testing for measuring in situ mechanical properties of pavement subgrade soils. Correlations between in situ and laboratory tests are presented. The effects of existing layers on the measurement of subgrade properties, and soil spatial and seasonal variability are discussed. Most importantly, the use of soil properties in pavement design and evaluation are explained. New applications or improvements to existing test methods to support the use of mechanistic/stochastic-based pavement design procedures are also explained.
Presents a complete coverage of all aspects of the theory and practice of pavement design including the latest concepts.