Download Free Evaluating Agricultural Research And Productivity Book in PDF and EPUB Free Download. You can read online Evaluating Agricultural Research And Productivity and write the review.

Here in one easy-to-understand volume are the statistical procedures and techniques the agricultural researcher needs to know in order to design, implement, analyze, and interpret the results of most experiments with crops. Designed specifically for the non-statistician, this valuable guide focuses on the practical problems of the field researcher. Throughout, it emphasizes the use of statistics as a tool of research—one that will help pinpoint research problems and select remedial measures. Whenever possible, mathematical formulations and statistical jargon are avoided. Originally published by the International Rice Research Institute, this widely respected guide has been totally updated and much expanded in this Second Edition. It now features new chapters on the analysis of multi-observation data and experiments conducted over time and space. Also included is a chapter on experiments in farmers' fields, a subject of major concern in developing countries where agricultural research is commonly conducted outside experiment stations. Statistical Procedures for Agricultural Research, Second Edition will prove equally useful to students and professional researchers in all agricultural and biological disciplines. A wealth of examples of actual experiments help readers to choose the statistical method best suited for their needs, and enable even the most complicated procedures to be easily understood and directly applied. An International Rice Research Institute Book
This book—prepared by Agricultural Science and Technology Indicators (ASTI), which is led by IFPRI—offers a comprehensive perspective on the evolution, current status, and future goals of agricultural research and development in Africa, including analyses of the complex underlying issues and challenges involved, as well as insights into how they might be overcome. Agriculture in Africa south of the Sahara is at a prospective tipping point. Growth has accelerated in the past decade, but is unsustainable given increasing use of finite resources. The yield gap in African agriculture is significant, and scenarios on feeding the world’s population into the future highlight the need for Africa to expand its agricultural production. Agricultural Research in Africa: Investing in Future Harvests discusses the need to shift to a growth path based on increased productivity—as in the rest of the developing world— which is essential if Africa is to increase rural incomes and compete in both domestic and international markets. Such a shift ultimately requires building on evolving improvements that collectively translate to deepening rural innovation capacity.
The U.S. Department of Agriculture (USDA) requested that the Board on Agriculture and Natural Resources of the National Research Council (NRC) convene a panel of experts to examine whether publicly funded agricultural research has influenced the structure of U.S. agriculture and, if so, how. The Committee to Review the Role of Publicly Funded Agricultural Research on the Structure of U.S. Agriculture was asked to assess the role of public-sector agricultural research on changes in the size and numbers of farms, with particular emphasis on the evolution of very-large-scale operations.
Interest is growing in sustainable agriculture, which involves the use of productive and profitable farming practices that take advantage of natural biological processes to conserve resources, reduce inputs, protect the environment, and enhance public health. Continuing research is helping to demonstrate the ways that many factorsâ€"economics, biology, policy, and traditionâ€"interact in sustainable agriculture systems. This book contains the proceedings of a workshop on the findings of a broad range of research projects funded by the U.S. Department of Agriculture. The areas of study, such as integrated pest management, alternative cropping and tillage systems, and comparisons with more conventional approaches, are essential to developing and adopting profitable and sustainable farming systems.
Analyze alternative national and international strategies and policies for meeting foof needs of the developing world on a sustainable basis, with particular emphasis on low-income countries and on the poorer groups in those countries.
​​This book provides standards and guidelines for quantifying greenhouse gas emissions and removals in smallholder agricultural systems and comparing options for climate change mitigation based on emission reductions and livelihood trade-offs. Globally, agriculture is directly responsible for about 11% of annual greenhouse gas (GHG) emissions and induces an additional 17% through land use change, mostly in developing countries. Farms in the developing countries of sub-Saharan Africa and Asia are predominately managed by smallholders, with 80% of land holdings smaller than ten hectares. However, little to no information exists on greenhouse gas emissions and mitigation potentials in smallholder agriculture. Greenhouse gas measurements in agriculture are expensive, time consuming, and error prone, challenges only exacerbated by the heterogeneity of smallholder systems and landscapes. Concerns over methodological rigor, measurement costs, and the diversity of approaches, coupled with the demand for robust information suggest it is germane for the scientific community to establish standards of measurements for quantifying GHG emissions from smallholder agriculture. Standard guidelines for use by scientists, development organizations will help generate reliable data on emissions baselines and allow rigorous comparisons of mitigation options. The guidelines described in this book, developed by the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS) and partners, are intended to inform anyone conducting field measurements of agricultural greenhouse gas sources and sinks, especially to develop IPCC Tier 2 emission factors or to compare mitigation options in smallholder systems.
The National Research Council's Science and Technology for Sustainability Program hosted two workshops in 2011 addressing the sustainability challenges associated with food security for all. The first workshop, Measuring Food Insecurity and Assessing the Sustainability of Global Food Systems, explored the availability and quality of commonly used indicators for food security and malnutrition; poverty; and natural resources and agricultural productivity. It was organized around the three broad dimensions of sustainable food security: (1) availability, (2) access, and (3) utilization. The workshop reviewed the existing data to encourage action and identify knowledge gaps. The second workshop, Exploring Sustainable Solutions for Increasing Global Food Supplies, focused specifically on assuring the availability of adequate food supplies. How can food production be increased to meet the needs of a population expected to reach over 9 billion by 2050? Workshop objectives included identifying the major challenges and opportunities associated with achieving sustainable food security and identifying needed policy, science, and governance interventions. Workshop participants discussed long term natural resource constraints, specifically water, land and forests, soils, biodiversity and fisheries. They also examined the role of knowledge, technology, modern production practices, and infrastructure in supporting expanded agricultural production and the significant risks to future productivity posed by climate change. This is a report of two workshops.
Southeast Asia made considerable progress in building and strengthening its agricultural R&D capacity during 2000–2017. All of the region’s countries reported higher numbers of agricultural researchers, improvements in their average qualification levels, and higher shares of women participating in agricultural R&D. In contrast, regional agricultural research spending remained stagnant, despite considerable growth in agricultural output over time. As a result, Southeast Asia’s agricultural research intensity—that is, agricultural research spending as a share of agricultural GDP—steadily declined from 0.50 percent in 2000 to just 0.33 percent in 2017. Although the extent of underinvestment in agricultural research differs across countries, all Southeast Asian countries invested below the levels deemed attainable based on the analysis summarized in this report. The region will need to increase its agricultural research investment substantially in order to address future agricultural production challenges more effectively and ensure productivity growth. Southeast Asia’s least developed agricultural research systems (Cambodia, Laos, and Myanmar) are characterized by low scientific output and researcher productivity as a direct consequence of severe underfunding and lack of sufficient well-qualified research staff. While Malaysia and Thailand have significantly more developed agricultural research systems, they still report key inefficiencies and resource constraints that require attention. Indonesia, the Philippines, and Vietnam occupy intermediate positions between these two groups of high- and low-performing agricultural research systems. Growing national economies, higher disposable incomes, and changing consumption patterns will prompt considerable shifts in levels of agricultural production, consumption, imports, and exports across Southeast Asia over the next 20 to 30 years. The resource-allocation decisions that governments make today will affect agricultural productivity for decades to come. Governments therefore need to ensure the research they undertake is responsive to future challenges and opportunities, and aligned with strategic development and agricultural sector plans. ASTI’s projections reveal that prioritizing investment in staple crops will still trigger fastest agricultural productivity growth in Laos. However, Indonesia, Malaysia, and Vietnam could achieve faster growth over the next 30 years by prioritizing investment in research focused on fruit, vegetables, livestock, and aquaculture. In Cambodia, Myanmar, and Thailand, the choice between focusing on staple crops versus high-value commodities was less pronounced, but projections did indicate that prioritizing investments in oil crop research would trigger significantly lower growth in agricultural productivity.