Download Free Eulers Number Book in PDF and EPUB Free Download. You can read online Eulers Number and write the review.

In 1988 The Mathematical Intelligencer, a quarterly mathematics journal, carried out a poll to find the most beautiful theorem in mathematics. Twenty-four theorems were listed and readers were invited to award each a 'score for beauty'. While there were many worthy competitors, the winner was 'Euler's equation'. In 2004 Physics World carried out a similar poll of 'greatest equations', and found that among physicists Euler's mathematical result came second only to Maxwell's equations. The Stanford mathematician Keith Devlin reflected the feelings of many in describing it as "like a Shakespearian sonnet that captures the very essence of love, or a painting which brings out the beauty of the human form that is far more than just skin deep, Euler's equation reaches down into the very depths of existence". What is it that makes Euler's identity, eiπ + 1 = 0, so special? In Euler's Pioneering Equation Robin Wilson shows how this simple, elegant, and profound formula links together perhaps the five most important numbers in mathematics, each associated with a story in themselves: the number 1, the basis of our counting system; the concept of zero, which was a major development in mathematics, and opened up the idea of negative numbers; π an irrational number, the basis for the measurement of circles; the exponential e, associated with exponential growth and logarithms; and the imaginary number i, the square root of -1, the basis of complex numbers. Following a chapter on each of the elements, Robin Wilson discusses how the startling relationship between them was established, including the several near misses to the discovery of the formula.
The interest earned on a bank account, the arrangement of seeds in a sunflower, and the shape of the Gateway Arch in St. Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. Designed for a reader with only a modest mathematical background, this biography brings out the central importance of e to mathematics and illuminates a golden era in the age of science.
The number e, called sometimes Euler's number, is a mathematical constant that is the base of natural logarithm. The number e can be calculated as is the limit of (1 + 1/n)n as n approaches infinity Here we present that number printed, in his first two million digits, in a single volume.
In the mid-eighteenth century, Swiss-born mathematician Leonhard Euler developed a formula so innovative and complex that it continues to inspire research, discussion, and even the occasional limerick. Dr. Euler's Fabulous Formula shares the fascinating story of this groundbreaking formula—long regarded as the gold standard for mathematical beauty—and shows why it still lies at the heart of complex number theory. In some ways a sequel to Nahin's An Imaginary Tale, this book examines the many applications of complex numbers alongside intriguing stories from the history of mathematics. Dr. Euler's Fabulous Formula is accessible to any reader familiar with calculus and differential equations, and promises to inspire mathematicians for years to come.
Leonhard Euler was one of the most prolific mathematicians that have ever lived. This book examines the huge scope of mathematical areas explored and developed by Euler, which includes number theory, combinatorics, geometry, complex variables and many more. The information known to Euler over 300 years ago is discussed, and many of his advances are reconstructed. Readers will be left in no doubt about the brilliance and pervasive influence of Euler's work.
Document from the year 2016 in the subject Mathematics - Miscellaneous, grade: A, , course: IB Math HL, language: English, abstract: When the concept of logarithms was first introduced to me, a plethora of questions revolved around my mind. My inquisitiveness compelled me to think and ask questions as to where are the practical applications of logarithms, why do we take different bases of these functions and what is the need for natural logarithms. Amongst these questions, one particularly intrigued me: why is e particularly the base of the natural logarithm. Why out of all numbers that exist did we choose e as the base of the natural logarithm function? I was fascinated by why taking the base e made the normal logarithm a natural logarithm. Therefore, to quench the curiosity of many others like me, I will show through this paper that why e is the correct choice for the base of exponential and natural logarithm functions. I shall also be exploring the most important property of e, via this paper.
How a simple equation reshaped mathematics Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author.
Sandifer has been studying Euler for decades and is one of the world’s leading experts on his work. This volume is the second collection of Sandifer’s “How Euler Did It” columns. Each is a jewel of historical and mathematical exposition. The sum total of years of work and study of the most prolific mathematician of history, this volume will leave you marveling at Euler’s clever inventiveness and Sandifer’s wonderful ability to explicate and put it all in context.
The history of mathematics is filled with major breakthroughs resulting from solutions to recreational problems. Problems of interest to gamblers led to the modern theory of probability, for example, and surreal numbers were inspired by the game of Go. Yet even with such groundbreaking findings and a wealth of popular-level books, research in recreational mathematics has often been neglected. The Mathematics of Various Entertaining Subjects now returns with a brand-new compilation of fascinating problems and solutions in recreational mathematics. This latest volume gathers together the top experts in recreational math and presents a compelling look at board games, card games, dice, toys, computer games, and much more. The book is divided into five parts: puzzles and brainteasers, geometry and topology, graph theory, games of chance, and computational complexity. Readers will discover what origami, roulette wheels, and even the game of Trouble can teach about math. Essays contain new results, and the contributors include short expositions on their topic’s background, providing a framework for understanding the relationship between serious mathematics and recreational games. Mathematical areas explored include combinatorics, logic, graph theory, linear algebra, geometry, topology, computer science, operations research, probability, game theory, and music theory. Investigating an eclectic mix of games and puzzles, The Mathematics of Various Entertaining Subjects is sure to entertain, challenge, and inspire academic mathematicians and avid math enthusiasts alike.
Among the myriad of constants that appear in mathematics, p, e, and i are the most familiar. Following closely behind is g, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this.