Download Free Equivariant Homotopy And Cohomology Theory Book in PDF and EPUB Free Download. You can read online Equivariant Homotopy And Cohomology Theory and write the review.

This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The works begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. The book then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. The basic machinery that is needed to make serious use of equivariant stable homotopy theory is presented next, along with discussions of the Segal conjecture and generalized Tate cohomology. Finally, the book gives an introduction to "brave new algebra", the study of point-set level algebraic structures on spectra and its equivariant applications. Emphasis is placed on equivariant complex cobordism, and related results on that topic are presented in detail.
This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The book begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. It then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. T.
This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The works begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. The book then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. The basic machinery that is needed to make serious use of equivariant stable homotopy theory is presented next, along with discussions of the Segal conjecture and generalized Tate cohomology. Finally, the book gives an introduction to "brave new algebra", the study of point-set level algebraic structures on spectra and its equivariant applications. Emphasis is placed on equivariant complex cobordism, and related results on that topic are presented in detail.
This book is a foundational piece of work in stable homotopy theory and in the theory of transformation groups. It may be roughly divided into two parts. The first part deals with foundations of (equivariant) stable homotopy theory. A workable category of CW-spectra is developed. The foundations are such that an action of a compact Lie group is considered throughout, and spectra allow desuspension by arbitrary representations. But even if the reader forgets about group actions, he will find many details of the theory worked out for the first time. More subtle constructions like smash products, function spectra, change of group isomorphisms, fixed point and orbit spectra are treated. While it is impossible to survey properly the material which is covered in the book, it does boast these general features: (i) a thorough and reliable presentation of the foundations of the theory; (ii) a large number of basic results, principal applications, and fundamental techniques presented for the first time in a coherent theory, unifying numerous treatments of special cases in the literature.
a
This book gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into K-theory and algebraic geometry, but it is in algebraic topology that the concepts are the most transparent and the proofs are the simplest. One of the most useful applications of equivariant cohomology is the equivariant localization theorem of Atiyah-Bott and Berline-Vergne, which converts the integral of an equivariant differential form into a finite sum over the fixed point set of the group action, providing a powerful tool for computing integrals over a manifold. Because integrals and symmetries are ubiquitous, equivariant cohomology has found applications in diverse areas of mathematics and physics. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, Loring Tu begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localization theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study.
A complete and definitive account of the authors' resolution of the Kervaire invariant problem in stable homotopy theory.
A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.
Filling a gap in the literature, this book takes the reader to the frontiers of equivariant topology, the study of objects with specified symmetries. The discussion is motivated by reference to a list of instructive “toy” examples and calculations in what is a relatively unexplored field. The authors also provide a reading path for the first-time reader less interested in working through sophisticated machinery but still desiring a rigorous understanding of the main concepts. The subject’s classical counterparts, ordinary homology and cohomology, dating back to the work of Henri Poincaré in topology, are calculational and theoretical tools which are important in many parts of mathematics and theoretical physics, particularly in the study of manifolds. Similarly powerful tools have been lacking, however, in the context of equivariant topology. Aimed at advanced graduate students and researchers in algebraic topology and related fields, the book assumes knowledge of basic algebraic topology and group actions.
Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.