Download Free Epitaxial Growth Part A Book in PDF and EPUB Free Download. You can read online Epitaxial Growth Part A and write the review.

Epitaxial Growth, Part A is a compilation of review articles that describe various aspects of the growth of single-crystal films on single-crystal substrates. The collection contains topics on the historical development of epitaxy, the nucleation of thin films, the structure of the interface between film and substrate, and the generation of defects during film growth. The text also provides descriptions of the methods used to prepare and examine thin films and a list of the overgrowth-substrate combinations studied. Mineralogists, materials engineers and scientists, and physicists will find this book a great source of insight.
Epitaxial Growth Part B is the second part of a collection of review articles that describe various aspects of the growth of single-crystal films on single-crystal substrates. The topics discussed are the nucleation of thin films, the structure of the interface between film and substrate, and the generation of defects during film growth. The methods used to prepare and examine thin films are described and a list of the overgrowth-substrate combinations studied so far is given.
Vol 2A: Basic TechnologiesHandbook of Crystal Growth, Second Edition Volume IIA (Basic Technologies) presents basic growth technologies and modern crystal cutting methods. Particularly, the methodical fundamentals and development of technology in the field of bulk crystallization on both industrial and research scales are explored. After an introductory chapter on the formation of minerals, ruling historically the basic crystal formation parameters, advanced basic technologies from melt, solution, and vapour being applied for research and production of the today most important materials, like silicon, semiconductor compounds and oxides are presented in detail. The interdisciplinary and general importance of crystal growth for human live are illustrated.Vol 2B: Growth Mechanisms and DynamicsHandbook of Crystal Growth, Second Edition Volume IIB (Growth Mechanisms and Dynamics) deals with characteristic mechanisms and dynamics accompanying each bulk crystal growth method discussed in Volume IIA. Before the atoms or molecules pass over from a position in the fluid medium (gas, melt or solution) to their place in the crystalline face they must be transported in the fluid over macroscopic distances by diffusion, buoyancy-driven convection, surface-tension-driven convection, and forced convection (rotation, acceleration, vibration, magnetic mixing). Further, the heat of fusion and the part carried by the species on their way to the crystal by conductive and convective transport must be dissipated in the solid phase by well-organized thermal conduction and radiation to maintain a stable propagating interface. Additionally, segregation and capillary phenomena play a decisional role for chemical composition and crystal shaping, respectively. Today, the increase of high-quality crystal yield, its size enlargement and reproducibility are imperative conditions to match the strong economy. Volume 2A Presents the status and future of Czochralski and float zone growth of dislocation-free silicon Examines directional solidification of silicon ingots for photovoltaics, vertical gradient freeze of GaAs, CdTe for HF electronics and IR imaging as well as antiferromagnetic compounds and super alloys for turbine blades Focuses on growth of dielectric and conducting oxide crystals for lasers and non-linear optics Topics on hydrothermal, flux and vapour phase growth of III-nitrides, silicon carbide and diamond are explored Volume 2B Explores capillarity control of the crystal shape at the growth from the melt Highlights modeling of heat and mass transport dynamics Discusses control of convective melt processes by magnetic fields and vibration measures Includes imperative information on the segregation phenomenon and validation of compositional homogeneity Examines crystal defect generation mechanisms and their controllability Illustrates proper automation modes for ensuring constant crystal growth process Exhibits fundamentals of solution growth, gel growth of protein crystals, growth of superconductor materials and mass crystallization for food and pharmaceutical industries
Epitaxial thin film heterostructures are critical for integrating multi-functionality on a chip and creating smart structures for next-generation solid-state devices. Here, we discuss the traditional lattice matching epitaxy (LME) for small lattice misfit and domain matching epitaxy (DME), which handles epitaxial growth across the misfit scale, where lattice misfit strain is predominant and can be relaxed completely, meaning that only the thermal and defect strains remain upon cooling. In low misfit systems, all three sources contribute to the residual strain upon cooling, as result of incomplete lattice relaxation. In the second part of the chapter, we will discuss the two critical contributors to the stress of the epitaxial film: the thermal coefficient of expansion mismatch and the lattice plane misfit. In the last part of the chapter, we will focus on unique cases where room temperature epitaxial growth is possible in nitride and oxide thin films.
This is the first-ever textbook on the fundamentals of nucleation, crystal growth and epitaxy. It has been written from a unified point of view and is thus a non-eclectic presentation of this interdisciplinary topic in materials science. The reader is required to possess some basic knowledge of mathematics and physics. All formulae and equations are accompanied by examples that are of technological importance. The book presents not only the fundamentals but also the state of the art in the subject. The second revised edition includes two separate chapters dealing with the effect of the Enrich-Schwoebel barrier for down-step diffusion, as well as the effect of surface active species, on the morphology of the growing surfaces. In addition, many other chapters are updated accordingly. Thus, it serves as a valuable reference book for both graduate students and researchers in materials science.
Epitaxy is relevant for thin film growth and is a very active area of theoretical research since several years. Recently powerful numerical techniques have been used to link atomistic effects at the film's surface to its macroscopic morphology. This book also serves as an introduction into this highly active interdisciplinary field of research for applied mathematicians, theoretical physicists and computational materials scientists.
Proceedings of the 1st International Conference on Epitaxial Crystal Growth, Budapest, Hungary, April 1990
Epitaxial Silicon Technology is a single-volume, in-depth review of all the silicon epitaxial growth techniques. This technology is being extended to the growth of epitaxial layers on insulating substrates by means of a variety of lateral seeding approaches. This book is divided into five chapters, and the opening chapter describes the growth of silicon layers by vapor-phase epitaxy, considering both atmospheric and low-pressure growth. The second chapter discusses molecular-beam epitaxial growth of silicon, providing a unique ability to grow very thin layers with precisely controlled doping characteristics. The third chapter introduces the silicon liquid-phase epitaxy, in which the growth of silicon layers arose from a need to decrease the growth temperature and to suppress autodoping. The fourth chapter addresses the growth of silicon on sapphire for improving the radiation hardness of CMOS integrated circuits. The fifth chapter deals with the advances in the application of silicon epitaxial growth. This chapter also discusses the formation of epitaxial layers of silicon on insulators, such as silicon dioxide, which do not provide a natural single crystal surface for growth. Each chapter begins with a discussion on the fundamental transport mechanisms and the kinetics governing the growth rate, followed by a description of the electrical properties that can be achieved in the layers and the restrictions imposed by the growth technique upon the control over its electrical characteristics. Each chapter concludes with a discussion on the applications of the particular growth technique. This reference material will be useful for process technologists and engineers who may need to apply epitaxial growth for device fabrication.
Proceedings of the NATO Advanced Research Workshop, Ringberg in Rottach Egern, Germany, February 20--24, 1995