Download Free Environmentally Friendly Syntheses Using Ionic Liquids Book in PDF and EPUB Free Download. You can read online Environmentally Friendly Syntheses Using Ionic Liquids and write the review.

Increased environmental consciousness within the scientific community has spurred the search for environmentally friendly processes as alternatives to conventional organic solvents. In the past two decades, numerous advances—including the use of ionic liquids—have made it possible to develop substitutes for some toxic solvents. Ionic liquids are widely recognized as suitable for use in organic reactions and can also improve the control of product distribution, enhanced reactivity, ease of product recovery, catalyst immobilization, and recycling. Environmentally Friendly Syntheses Using Ionic Liquids presents the latest developments in the field. It also reviews the latest applications in a wide range of fields including biotechnology, nuclear science, medicine, pharmaceuticals, environmental science, and organic and inorganic chemistry—all from the standpoint of green sustainable chemistry. Growing interest in the field of ionic liquids will define newer and unexplored areas of applications, expanding possible use of these environmentally friendly chemicals. The information presented in this book will undoubtedly help motivate readers to further explore the field.
Application, Purification, and Recovery of Ionic Liquids provides a comprehensive overview of the usage of ionic liquids (IL). The book gives a description of the methods used for recovery and purification of ILs, a summary of the economic aspects of using ILs, and a review on the toxicity data of ILs. It is written for researchers, scientists, and engineers working with ILs, their properties, and usages. The book not only describes the chemical aspects, but the economic and environmental aspects as well, making it of particular interest to professionals applying this technology. - Chapters written by scientists in academia and researchers in industry, ensuring coverage of both the scientific fundaments and industrial applications - A single source of information for a broad collection of recovery and purification methods - Provides information on using ionic liquids as green solvents - Includes economic aspects of recovery and reuse of ionic liquids
The demand for increasingly clean and efficient chemical syntheses is becoming more urgent from both an economic and an environmental standpoint. Many technologies rely on large quantities of hazardous even toxic solvents. A promising and now established approach is the development of new, ionic solvents that are fluid at room temperature. These solvents not only have the potential to increase chemical reactivity and thus lead to more efficient processes, but are also non-flammable and are less toxic than conventional solvents due to their low vapor pressure. This volume brings together the latest developments in this fascinating field, supplemented by numerous practical tips, and thus provides those working in both research and industry with an indispensable source of information.
During these early years, the chronic toxicological properties of chemicals were often completely unknown and many unwittingly became indispensable tools of the trade. Early pioneers in green chemistry included Trost (who developed the atom economy principle) and Sheldon (who developed the E-Factor). These measures were introduced to encourage the use of more sustainable chemistry and provide some benchmarking data to encourage scientists to aspire to more benign synthesis. Green chemistry is essentially the design of chemical processes and procedures that reduce or eliminate the use, or the generation, of hazardous substances. Green chemistry is a growing area of research and an increasing number of researchers are now involved in this field. The number of publications has dramatically increased and new recognition of advances made is necessary with respect to other research areas.
"Contains the key papers presented at the American Chemical Society (ACS) national meeting symposium 'Green (or Greener) Industrial Applications of Ionic Liquids', held in San Diego, California, April 1-5, 2001"--Page xiii.
Traditional methods in synthetic chemistry produce chemical waste and byproducts, yield smaller desired products, and generate toxic chemical substances, but the past two centuries have seen consistent, greener improvements in organic synthesis and transformations. These improvements have contributed to substance handling efficiency by using green-engineered forerunners like sustainable techniques, green processes, eco-friendly catalysis, and have minimized energy consumption, reduced potential waste, improved desired product yields, and avoided toxic organic precursors or solvents in organic synthesis. Green synthesis has the potential to have a major ecological and monetary impact on modern pharmaceutical R&D and organic chemistry fields. This book presents a broad scope of green techniques for medicinal, analytical, environmental, and organic chemistry applications. It presents an accessible overview of new innovations in the field, dissecting the highlights and green chemistry attributes of approaches to green synthesis, and provides cases to exhibit applications to pharmaceutical and organic chemistry. Although daily chemical processes are a major part of the sustainable development of pharmaceuticals and industrial products, the resulting environmental pollution of these processes is of worldwide concern. This edition discusses green chemistry techniques and sustainable processes involved in synthetic organic chemistry, natural products, drug syntheses, as well various useful industrial applications.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Switchable Solvents explores the preparation, properties, chemical processes and applications of this class of green solvents. The book provides an in-depth overview on the area of switchable solvents in various industrial applications, focusing on the purification and extraction of chemical compounds utilizing green chemistry protocols that include liquid-liquid, solid-liquid, liquid-gas and lipids separation technologies. In addition, it includes recent advances in greener extraction and separation processes. This book will be an invaluable guide to students, professors, scientists and R&D industrial specialists working in the field of sustainable chemistry, organic, analytical, chemical engineering, environmental and pharmaceutical sciences. - Provides a broad overview of switchable solvents in sustainable chemical processes - Compares the use of switchable solvents as greener solvents over conventional solvents - Outlines eco-friendly organic synthesis and chemical processes using switchable solvents - Lists various industrial separations/extraction processes using switchable solvents
Annotation FollowingIonic Liquids: Industrial Applications to Green Chemistry, SS #818, by the same editors, this book focuses on exciting new developments in ionic liquids.
Due to their distinctive properties, ionic liquids have attracted the great and unflagging interest of researchers for over 30 years. This interest has been focused mainly on their use as a green alternative to volatile organic solvents. However, they often act not only as solvents but also as catalysts, catalyst immobilizers and initiators. Over 100 types of chemical reactions are known in which ionic liquids (ILs) were applied successfully. This Special Issue is aimed at showing the most recent advances and trends in the design, synthesis and characterization of catalysts based on ILs, as well as presenting their activity and application potential.
This book contains the lecture notes for the NATO Advanced Research Workshop on th Green Industrial Applications of Ionic Liquids held April 12th_16 , 2000 in Heraklion, Crete, Greece. This was the fIrst international meeting devoted to research in the area of ionic liquids (salts with melting points below 100 0c), and was intended to explore the promise of ionic liquids as well as to set a research agenda for the fIeld. It was the fIrst international meeting dedicated to the study and application of ionic liquids as solvents, and forty-one scientists and engineers from academia, industry, and government research laboratories (as well as six industry observers and four student assistants) met to discuss the current and future status of the application of ionic liquids to new green industrial technologies. It was immediately clear that the number of organic chemists and engineers working in the fIeld needed to be increased. It was also clear that the declining interest in high temperature molten salts and subsequent increase in low melting ionic liquid solvents had not yet taken hold in Eastern Europe. Participants from NATO Partner Countries contributed signifIcant expertise in high temperature molten salts and were able to take back a new awareness and interest in ionic liquid solvents.