Download Free Environmental Technologies To Treat Rare Earth Elements Pollution Principles And Engineering Book in PDF and EPUB Free Download. You can read online Environmental Technologies To Treat Rare Earth Elements Pollution Principles And Engineering and write the review.

This second edition is fully updated with new material to create a comprehensive and accessible reference book: New chapters on sulfur removal via bioelectrochemical systems, use of sulfate radicals in advanced oxidation processes and sulfur nanoparticle biosynthesis. New sections on: sulfur cycle chemistry and microbiology; sulfate removal vs. recovery of resources from sulfate-rich wastewaters; microaeration for biogas desulfurisation; biological treatment of gypsum and sulfur-rich solid waste; up-to-date process control for treatment of sulfur-rich waste streams. New case studies with emphasis on practices for sewer and steel corrosion control, odour mitigation, autotrophic denitrification and bioremediation of acid mine polluted sites in both developed and developing countries have been included. Novel concepts of environmental technologies to treat sulfur pollution of wastewater, off-gases, solid waste, soils and sediments are presented. Up-to-date research findings and innovative technologies for recovering resources, i.e. metals, fertiliser, biofuels and irrigation water, from sulfur polluted waste are provided. This book may serve both as an advanced textbook for undergraduate and graduate students majoring in environmental sciences, technology or engineering as well as a handbook for tertiary educators, researchers, professionals and policymakers who conduct research and practices in the sulfur related fields. It is essential reading for consulting companies when dealing with sulfur related environmental (bio)technologies.
The growth and development witnessed today in modern science, engineering, and technology owes a heavy debt to the rare, refractory, and reactive metals group, of which niobium is a member. Extractive Metallurgy of Niobium presents a vivid account of the metal through its comprehensive discussions of properties and applications, resources and resource processing, chemical processing and compound preparation, metal extraction, and refining and consolidation. Typical flow sheets adopted in some leading niobium-producing countries for the beneficiation of various niobium sources are presented, and various chemical processes for producing pure forms of niobium intermediates such as chloride, fluoride, and oxide are discussed. The book also explains how to liberate the metal from its intermediates and describes the physico-chemical principles involved. It is an excellent reference for chemical metallurgists, hydrometallurgists, extraction and process metallurgists, and minerals processors. It is also valuable to a wide variety of scientists, engineers, technologists, and students interested in the topic.
This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DoE) based on data collected and research performed during 2010. In the report, DoE describes plans to: (1) develop its first integrated research agenda addressing critical materials, building on three technical workshops convened by the DoE during November and December 2010; (2) strengthen its capacity for information-gathering on this topic; and (3) work closely with international partners, including Japan and Europe, to reduce vulnerability to supply disruptions and address critical material needs. Charts and tables. This is a print on demand report.
Hydrometallurgy of Rare Earths: Extraction and Separation provides the basic knowledge for rare earth extraction and separation, including flow sheet selection criteria and related technology. The book includes the latest research findings on all rare earth separation processes, methods of controlling operation costs, and strategies that help lower wastewater and waste solid discharge. It discusses many real process parameters and actual situations in rare earth separation plants, also examining the basic principles, technologies, process parameters and advances and achievements in the area of rare earth extraction and separation. In addition, the book covers extraction separation theory as developed by Professor Guanxian Xu and Professor Chunhua Yan and the creative use of a computational simulation program to replace the bench scale and pilot plant tests and directly design rare earth extraction separation processes. - Outlines the theory of solvent extraction and separation of rare earths (REs) - Provides the necessary tools for a REs separation plant design - Includes a unique simulation program for the calculation of all process parameters - Includes Chinese nomenclature that is useful for identifying the various processes, also comparing it to the global literature
Environmental Technologies to Treat Nitrogen Pollution provides a thorough understanding of the principles and applications of environmental technologies to treat nitrogen contamination. The main focus is on water and wastewater treatment, with additional coverage of leachates and off-gasses. The book brings together an up-to-date compilation of the main physical, chemical and biological processes demanded for the removal of nitrogenous contaminants from water, wastewater, leachates and off-gasses. It includes a series of chapters providing a deep and broad knowledge of the principles and applications required for the treatment of nitrogen pollution. Each chapter has been prepared by recognized specialists across the range of different aspects involved in the removal of nitrogenous contaminants from industrial discharges. Environmental Technologies to Treat Nitrogen Pollution is the first book to provide a complete review of all the different processes used for the global management of nitrogen pollution. It also contains updated information about strategies to achieve nitrogen recovery and reuse in different industrial sectors. Several case studies document the application of different environmental technologies to manage nitrogen pollution. This book will be of interest to lecturers and graduate students in the following subject areas: Environmental Engineering, Environmental Biotechnology, wastewater treatment plant design, water pollution control, contaminants recovery and reuse. The book will also be an attractive reference for environmental engineering consultants.
The sustainable use of natural resources is an important global challenge, and improved metal sustainability is a crucial goal for the 21st century in order to conserve the supply of critical metals and mitigate the environmental and health issues resulting from unrecovered metals. Metal Sustainability: Global Challenges, Consequences and Prospects discusses important topics and challenges associated with sustainability in metal life cycles, from mining ore to beneficiation processes, to product manufacture, to recovery from end-of-life materials, to environmental and health concerns resulting from generated waste. The broad perspective presented highlights the global interdependence of the many stages of metal life cycles. Economic issues are emphasized and relevant environmental, health, political, industrial and societal issues are discussed. The importance of applying green chemistry principles to metal sustainability is emphasized. Topics covered include: • Recycling and sustainable utilization of precious and specialty metals • Formal and informal recycling from electronic and other high-tech wastes • Global management of electronic wastes • Metal reuse and recycling in developing countries • Effects of toxic and other metal releases on the environment and human health • Effect on bacteria of toxic metal release • Selective recovery of platinum group metals and rare earth metals • Metal sustainability from a manufacturing perspective • Economic perspectives on sustainability, mineral development, and metal life cycles • Closing the Loop – Minerals Industry Issues The aim of this book is to improve awareness of the increasingly important role metals play in our high-tech society, the need to conserve our metal supply throughout the metal life cycle, the importance of improved metal recycling, and the effects that unhindered metal loss can have on the environment and on human health.
This collection offers new research findings, innovations, and industrial technological developments in extractive metallurgy, energy and environment, and materials processing. Technical topics included in the book are thermodynamics and kinetics of metallurgical reactions, electrochemical processing of materials, plasma processing of materials, composite materials, ionic liquids, thermal energy storage, energy efficient and environmental cleaner technologies and process modeling. These topics are of interest not only to traditional base ferrous and non-ferrous metal industrial processes but also to new and upcoming technologies, and they play important roles in industrial growth and economy worldwide.
This comprehensive book provides an up-to-date and international approach that addresses the Motivations, Technologies and Assessment of the Elimination and Recovery of Phosphorus from Wastewater. This book is part of the Integrated Environmental Technology Series.
This book is a definitive reference on the environmental geochemistry and resource potential of metallurgical slags
Thoroughly revised and up-dated edition of a highly successful textbook.