Download Free Environmental Technologies To Treat Rare Earth Element Pollution Book in PDF and EPUB Free Download. You can read online Environmental Technologies To Treat Rare Earth Element Pollution and write the review.

The book will cover a wide range of subjects related to rare earth elements, including the sources, detection and applications of rare earths, environmental and ecological issues related to rare earths, recovery of rare earths using physical, chemical and biological methods, recovery of rare earths from waste resources, conversion of rare earths to nano-particles and their applications. It is intended or all levels of teaching and research from senior undergraduate to higher levels and to those who are working on metal/metalloids more particularly focused on rare earth elements from a science, engineering, health and environmental perspective.
This second edition is fully updated with new material to create a comprehensive and accessible reference book: New chapters on sulfur removal via bioelectrochemical systems, use of sulfate radicals in advanced oxidation processes and sulfur nanoparticle biosynthesis. New sections on: sulfur cycle chemistry and microbiology; sulfate removal vs. recovery of resources from sulfate-rich wastewaters; microaeration for biogas desulfurisation; biological treatment of gypsum and sulfur-rich solid waste; up-to-date process control for treatment of sulfur-rich waste streams. New case studies with emphasis on practices for sewer and steel corrosion control, odour mitigation, autotrophic denitrification and bioremediation of acid mine polluted sites in both developed and developing countries have been included. Novel concepts of environmental technologies to treat sulfur pollution of wastewater, off-gases, solid waste, soils and sediments are presented. Up-to-date research findings and innovative technologies for recovering resources, i.e. metals, fertiliser, biofuels and irrigation water, from sulfur polluted waste are provided. This book may serve both as an advanced textbook for undergraduate and graduate students majoring in environmental sciences, technology or engineering as well as a handbook for tertiary educators, researchers, professionals and policymakers who conduct research and practices in the sulfur related fields. It is essential reading for consulting companies when dealing with sulfur related environmental (bio)technologies.
This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DoE) based on data collected and research performed during 2010. In the report, DoE describes plans to: (1) develop its first integrated research agenda addressing critical materials, building on three technical workshops convened by the DoE during November and December 2010; (2) strengthen its capacity for information-gathering on this topic; and (3) work closely with international partners, including Japan and Europe, to reduce vulnerability to supply disruptions and address critical material needs. Charts and tables. This is a print on demand report.
b”Application of Nanotechnology in Mining ProcessesNanotechnology has revolutionized processes in many industries but its application in the mining industry has not been widely discussed. This unique book provides an overview of the successful implementation of nanotechnology in some of the key environmental and beneficiation mining processes. This book explores extensively the potential of nanotechnology to revolutionize the mining industry which has been relying for a very long on processes with limited efficiencies. The nine specialized chapters focus on applying nanoflotation to improve mineral processing, effective extraction of metals from leachates or pregnant solutions using nanoscale supramolecular hosts, and development of nano-adsorbents or nano-based strategies for the remediation or valorization of AMD. The application of nanotechnology in mining has so far received little attention from the industry and researchers and this groundbreaking book features critical issues so far under-reported in the literature: Application of nanotechnology in mineral processing for the enhancement of froth flotation Development of smart nanomaterials and application for the treatment of acid mine drainage Recovery of values from pregnant solutions using nanoadsorbents Valorization of AMD through formation of multipurpose nanoproducts. Audience Industrial interest will be from mining plant operators, environmental managers, water treatment plants managers, and operators. Researchers in nanotechnology, environmental science, mining, and metallurgy engineering will find the book valuable, as will government entities such as regulatory bodies officers and environmentalists.
This book deals with the rare earth elements (REE), which are a series of 17 transition metals: scandium, yttrium and the lanthanide series of elements (lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium). They are relatively unknown to the wider public, despite their numerous applications and their critical role in many high-tech applications, such as high-temperature superconductors, phosphors (for energy-saving lamps, flat-screen monitors and flat-screen televisions), rechargeable batteries (household and automotive), very strong permanent magnets (used for instance in wind turbines and hard-disk drives), or even in a medical MRI application. This book describes the history of their discovery, the major REE ore minerals and the major ore deposits that are presently being exploited (or are planned to be exploited in the very near future), the physical and chemical properties of REEs, the mineral processing of REE concentrates and their extractive metallurgy, the applications of these elements, their economic aspects and the influential economical role of China, and finally the recycling of the REE, which is an emerging field.
Owing to their unique magnetic, phosphorescent, and catalytic properties, rare earths are the elements that make possible teverything from the miniaturization of electronics, to the enabling of green energy and medical technologies, to supporting essential telecommunications and defense systems. An iPhone uses eight rare earths for everything from its colored screen, to its speakers, to the miniaturization of the phone?s circuitry. On the periodic table rare earth elements comprise a set of seventeen chemical elements (the fifteen lanthanides plus scandium and yttrium). There would be no Pokémon Go without rare earths. Rare Earth Frontiers is a work of human geography. Klinger looks historically and geographically at the ways rare earth elements in three discrete but representative and contested sites are given meaning.
Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.
Increased consumption of electronic equipment has brought with it a greater demand for rare earth elements and metals. Adding to this is the growth in low carbon technologies such as hybrid fuel vehicles. It is predicted that the global supply of rare earth elements could soon be exhausted. A sustainable approach to the use and recovery of rare earth elements is needed, and this book addresses the political, economic and research agendas concerning them. The problem is discussed thoroughly and a multi-disciplinary team of authors from the chemistry, engineering and biotechnology sectors presents a range of solutions, from traditional metallurgical methods to innovations in biotechnology. Case studies add value to the theory presented, and indirect targets for recovery, such as municipal waste and combustion ash are considered. This book will be essential reading for researchers in academia and industry tackling sustainable element recovery, as well as postgraduate students in chemistry, engineering and biotechnology. Environmental scientists and policy makers will also benefit from reading about potential benefits of recovery from waste streams.