Download Free Environmental Influences On Nectar Secretion Book in PDF and EPUB Free Download. You can read online Environmental Influences On Nectar Secretion and write the review.

Nectar is the most important reward offered by plants to pollinating animals. This book is a modern and interdisciplinary text on nectar and nectaries, prompted by the expansion of knowledge in ecological and molecular fields, and the strong recent interest in pollination biology. The topics covered vary widely: they include historical aspects, the structure and ultrastructure of nectaries and relationships to plant systematics, the dynamics of nectar secretion, nectar chemistry and the molecular biology of defence proteins, and more.
Tremendous progress has been made during the past decade in the burgeoning field of plant reproductive biology. A number of quantitative and technical breakthroughs, such as horizontal starch-gel electrophoresis, have resulted in a revolution in our thinking. The study of breeding systems, which used to be marked by a rather static focus on pollination and self-incompatibility, has been transformed by dynamic models of transitional pathways, and investigators are looking not only into genetic factors but ecological ones as well. Workers in the field have recently produced detailed accounts of mating success and the relative fitness of plants as male and female parents, thus testing the applicability of sexual selection theory to plants. Ecology and Evolution of Plant Reproduction surveys recent advances in the field of plant reproductive biology and identifies fruitful avenues for future research. The contributors are well known in the fields of morphology, systematics, genetics, cell biology, and ecology, representing the full spectrum of approaches that contribute vigor to this emerging field. This new work will benefit professionals and graduate students in plant science and plant breeding, evolutionary ecology, genetics, and reproductive biology.
Floral nectar is a sweet, aqueous secretion that mainly consists of sugars and to a lesser extent amino acids. It is offered by plants to entice pollinators and to ensure pollination and thus sexual reproduction. This book discusses several benefits of plant nectar. It also discusses the production and chemical composition of nectar.
The number of currently known, described and accepted plant species is ca 374,000, of which approximately 295,00 (79%) are angiosperms. Almost 90% of this huge number of flowering plants is pollinated by animals (mostly insects) via nectar-mediated interactions. Notably, three-fourths of the leading global crop plants produce nectar and are animal pollinated, which is estimated to account for one-third of human food resources. Nectar can also be produced on tissues outside of flowers, by so-called extrafloral nectaries, and commonly mediate interactions with ‘body-guard’ ants and other pugnacious insects that defend the plant from herbivores. Extrafloral nectar is present in almost 4,000 plant species, a majority of them in the angiosperms. This brief summary on the occurrence of nectar in the plant kingdom is just to highlight that nectar has a fundamental role in two basal functions that allow the maintenance of our ecosystems: sexual plant reproduction and protection of plants from herbivory. Despite playing essential ecological and evolutionary functions, our current knowledge about nectar is largely incomplete; however, new research directions and perspectives on nectaries and nectars have arisen in recent years. In the last two decades, there were only a few ‘moments’ in which nectar was the main character in international meetings or in published books. In 2002, the first (and only) international meeting “Nectar and nectary: from biology to biotechnology” dedicated exclusively to nectar and nectaries was held in Italy (Montalcino, Siena) and in 2003 the proceedings were published in a special volume of Plant Systematics and Evolution (238, issue 1-4). In 2007, the book Nectar and Nectaries was published (Springer) with most of the contributions provided by authors that attended the meeting in Italy. Another book dedicated to nectar was published in 2015 (Nectar: Production, Chemical Composition and Benefits to Animals and Plants, Nova Science Publishers) covering aspects mainly related to nectar chemical composition and plant-pollinator interactions. Similarly, symposia focused on nectar have been organized within the International Botanical Congress in 2011 and 2017. Considering that the last few years has yielded essential developments in the understanding of nectar biology, we thought now is the moment to further stimulate research on this important topic. This aim has been met through 18 papers published in our Research Topic New Perspectives on the Biology of Nectaries and Nectars, with subjects spanning evolution and ecology to nectar chemistry and nectary structure.
This book has a wider approach not strictly focused on crop production compared to other books that are strictly oriented towards bees, but has a generalist approach to pollination biology. It also highlights relationships between introduced and wild pollinators and consequences of such introductions on communities of wild pollinating insects. The chapters on biochemical basis of plant-pollination interaction, pollination energetics, climate change and pollinators and pollinators as bioindicators of ecosystem functioning provide a base for future insights into pollination biology. The role of honeybees and wild bees on crop pollination, value of bee pollination, planned honeybee pollination, non-bee pollinators, safety of pollinators, pollination in cages, pollination for hybrid seed production, the problem of diseases, genetically modified plants and bees, the role of bees in improving food security and livelihoods, capacity building and awareness for pollinators are also discussed.
Pollinators-insects, birds, bats, and other animals that carry pollen from the male to the female parts of flowers for plant reproduction-are an essential part of natural and agricultural ecosystems throughout North America. For example, most fruit, vegetable, and seed crops and some crops that provide fiber, drugs, and fuel depend on animals for pollination. This report provides evidence for the decline of some pollinator species in North America, including America's most important managed pollinator, the honey bee, as well as some butterflies, bats, and hummingbirds. For most managed and wild pollinator species, however, population trends have not been assessed because populations have not been monitored over time. In addition, for wild species with demonstrated declines, it is often difficult to determine the causes or consequences of their decline. This report outlines priorities for research and monitoring that are needed to improve information on the status of pollinators and establishes a framework for conservation and restoration of pollinator species and communities.