Download Free Environmental Impact Of Oil Spills In Polar Waters Book in PDF and EPUB Free Download. You can read online Environmental Impact Of Oil Spills In Polar Waters and write the review.

U.S. Arctic waters north of the Bering Strait and west of the Canadian border encompass a vast area that is usually ice covered for much of the year, but is increasingly experiencing longer periods and larger areas of open water due to climate change. Sparsely inhabited with a wide variety of ecosystems found nowhere else, this region is vulnerable to damage from human activities. As oil and gas, shipping, and tourism activities increase, the possibilities of an oil spill also increase. How can we best prepare to respond to such an event in this challenging environment? Responding to Oil Spills in the U.S. Arctic Marine Environment reviews the current state of the science regarding oil spill response and environmental assessment in the Arctic region north of the Bering Strait, with emphasis on the potential impacts in U.S. waters. This report describes the unique ecosystems and environment of the Arctic and makes recommendations to provide an effective response effort in these challenging conditions. According to Responding to Oil Spills in the U.S. Arctic Marine Environment, a full range of proven oil spill response technologies is needed in order to minimize the impacts on people and sensitive ecosystems. This report identifies key oil spill research priorities, critical data and monitoring needs, mitigation strategies, and important operational and logistical issues. The Arctic acts as an integrating, regulating, and mediating component of the physical, atmospheric and cryospheric systems that govern life on Earth. Not only does the Arctic serve as regulator of many of the Earth's large-scale systems and processes, but it is also an area where choices made have substantial impact on life and choices everywhere on planet Earth. This report's recommendations will assist environmentalists, industry, state and local policymakers, and anyone interested in the future of this special region to preserve and protect it from damaging oil spills.
Since the early 1970s, experts have recognized that petroleum pollutants were being discharged in marine waters worldwide, from oil spills, vessel operations, and land-based sources. Public attention to oil spills has forced improvements. Still, a considerable amount of oil is discharged yearly into sensitive coastal environments. Oil in the Sea provides the best available estimate of oil pollutant discharge into marine waters, including an evaluation of the methods for assessing petroleum load and a discussion about the concerns these loads represent. Featuring close-up looks at the Exxon Valdez spill and other notable events, the book identifies important research questions and makes recommendations for better analysis ofâ€"and more effective measures againstâ€"pollutant discharge. The book discusses: Inputâ€"where the discharges come from, including the role of two-stroke engines used on recreational craft. Behavior or fateâ€"how oil is affected by processes such as evaporation as it moves through the marine environment. Effectsâ€"what we know about the effects of petroleum hydrocarbons on marine organisms and ecosystems. Providing a needed update on a problem of international importance, this book will be of interest to energy policy makers, industry officials and managers, engineers and researchers, and advocates for the marine environment.
Whether the result of an oil well blowout, vessel collision or grounding, leaking pipeline, or other incident at sea, each marine oil spill will present unique circumstances and challenges. The oil type and properties, location, time of year, duration of spill, water depth, environmental conditions, affected biomes, potential human community impact, and available resources may vary significantly. Also, each spill may be governed by policy guidelines, such as those set forth in the National Response Plan, Regional Response Plans, or Area Contingency Plans. To respond effectively to the specific conditions presented during an oil spill, spill responders have used a variety of response optionsâ€"including mechanical recovery of oil using skimmers and booms, in situ burning of oil, monitored natural attenuation of oil, and dispersion of oil by chemical dispersants. Because each response method has advantages and disadvantages, it is important to understand specific scenarios where a net benefit may be achieved by using a particular tool or combination of tools. This report builds on two previous National Research Council reports on dispersant use to provide a current understanding of the state of science and to inform future marine oil spill response operations. The response to the 2010 Deepwater Horizon spill included an unprecedented use of dispersants via both surface application and subsea injection. The magnitude of the spill stimulated interest and funding for research on oil spill response, and dispersant use in particular. This study assesses the effects and efficacy of dispersants as an oil spill response tool and evaluates trade-offs associated with dispersant use.
This volume offers a review of measures taken at different levels to prevent oil inputs to the North Sea from sources such as shipping and oil installations. A range of data from satellites, remote sensing, aerial surveillance, in-situ monitoring, oil spill sampling and beached bird surveys presents a comprehensive portrait of trends in oil pollution over many years. Topics include Bonn Agreement-based actions to eliminate illegal and accidental pollution from ships, OSPAR monitoring of oil installations, EMSA CleanSeaNet activities, and an internationally approved common standard for oil spills presented by the Bonn-OSINet. A chapter on the role of the IMO in preventing oil pollution from ships provides an international context, while others discuss efforts being made at the national level. A decadal review of the state of the North Sea prepared by OSPAR supports the view that there has been a significant reduction of oil inputs to the sea. This thorough review addresses national and international agencies and government bodies, as well as policymakers and practitioners in the fields of shipping, ports and terminals, oil extraction and marine management. Further, it provides researchers with essential reference material on tools and techniques for monitoring oil pollution and offers a valuable resource for undergraduate and post-graduate students in the field of marine oil pollution.
Approximately 3 million gallons of oil or refined petroleum products are spilled into U.S. waters every year. Oil dispersants (chemical agents such as surfactants, solvents, and other compounds) are used to reduce the effect of oil spills by changing the chemical and physical properties of the oil. By enhancing the amount of oil that physically mixes into the water, dispersants can reduce the potential that a surface slick will contaminate shoreline habitats. Although called for in the Oil Pollution Act of 1990 as a tool for minimizing the impact of oil spills, the use of chemical dispersants has long been controversial. This book reviews the adequacy of existing information and ongoing research regarding the effectiveness of dispersants as an oil spill response technique, as well as the effect of dispersed oil on marine and coastal ecosystems. Oil Spill Dispersants also includes recommended steps for policy makers faced with making hard choices regarding the use of dispersants as part of spill contingency planning efforts or during actual spills.
This open access book is a result of the Dalhousie-led research project Safe Navigation and Environment Protection, supported by a grant from the Ocean Frontier Institute’s the Canada First Research Excellent Fund (CFREF). The book focuses on Arctic shipping and investigates how ocean change and anthropogenic impacts affect our understanding of risk, policy, management and regulation for safe navigation, environment protection, conflict management between ocean uses, and protection of Indigenous peoples’ interests. A rapidly changing Arctic as a result of climate change and ice loss is rendering the North more accessible, providing new opportunities while producing impacts on the Arctic. The book explores ideas for enhanced governance of Arctic shipping through risk-based planning, marine spatial planning and scaling up shipping standards for safety, environment protection and public health.
Diluted bitumen has been transported by pipeline in the United States for more than 40 years, with the amount increasing recently as a result of improved extraction technologies and resulting increases in production and exportation of Canadian diluted bitumen. The increased importation of Canadian diluted bitumen to the United States has strained the existing pipeline capacity and contributed to the expansion of pipeline mileage over the past 5 years. Although rising North American crude oil production has resulted in greater transport of crude oil by rail or tanker, oil pipelines continue to deliver the vast majority of crude oil supplies to U.S. refineries. Spills of Diluted Bitumen from Pipelines examines the current state of knowledge and identifies the relevant properties and characteristics of the transport, fate, and effects of diluted bitumen and commonly transported crude oils when spilled in the environment. This report assesses whether the differences between properties of diluted bitumen and those of other commonly transported crude oils warrant modifications to the regulations governing spill response plans and cleanup. Given the nature of pipeline operations, response planning, and the oil industry, the recommendations outlined in this study are broadly applicable to other modes of transportation as well.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 180. This volume addresses the rapid decline of Arctic sea ice, placing recent sea ice decline in the context of past observations, climate model simulations and projections, and simple models of the climate sensitivity of sea ice. Highlights of the work presented here include An appraisal of the role played by wind forcing in driving the decline; A reconstruction of Arctic sea ice conditions prior to human observations, based on proxy data from sediments; A modeling approach for assessing the impact of sea ice decline on polar bears, used as input to the U.S. Fish and Wildlife Service's decision to list the polar bear as a threatened species under the Endangered Species Act; Contrasting studies on the existence of a "tipping point," beyond which Arctic sea ice decline will become (or has already become) irreversible, including an examination of the role of the small ice cap instability in global warming simulations; A significant summertime atmospheric response to sea ice reduction in an atmospheric general circulation model, suggesting a positive feedback and the potential for short-term climate prediction. The book will be of interest to researchers attempting to understand the recent behavior of Arctic sea ice, model projections of future sea ice loss, and the consequences of sea ice loss for the natural and human systems of the Arctic.