Download Free Engineering Uas Applications Book in PDF and EPUB Free Download. You can read online Engineering Uas Applications and write the review.

Unmanned aerial systems (UAS) have evolved rapidly in recent years thanks to advances in microelectromechanical components, navigation, perception, and artificial intelligence, allowing for a fast development of autonomy. This book presents general approaches to develop, test, and evaluate critical functions such as navigation, obstacle avoidance and perception, and the capacity to improve performance in real and simulated scenarios. It provides the practical knowledge to install, analyze and evaluate UAS solutions working in real systems; illustrates how to use and configure complete platforms and software tools; and reviews the main enabling technologies applied to develop UAS, possibilities and evaluation methodology. You will get the tools you need to evaluate navigation and obstacle avoidance functions, object detection, and planning and landing alternatives in simulated conditions. The book also provides helpful guidance on the integration of additional sensors (video, weather, meteorological) and communication networks to build IoT solutions. This is an important book for practitioners and researchers interested in integrating advanced techniques in the fields of AI, sensor fusion and mission management, and anyone interest in applying and testing advanced algorithms in UAS platforms.
This book showcases how new and emerging technologies like Unmanned Aerial Vehicles (UAVs) are trying to provide solutions to unresolved socio-economic and environmental problems. Unmanned vehicles can be classified into five different types according to their operation. These five types are unmanned ground vehicles, unmanned aerial vehicles, unmanned surface vehicles (operating on the surface of the water), unmanned underwater vehicles, and unmanned spacecraft. Unmanned vehicles can be guided remotely or function as autonomous vehicles. The technology has a wide range of uses including agriculture, industry, transport, communication, surveillance and environment applications. UAVs are widely used in precision agriculture; from monitoring the crops to crop damage assessment. This book explains the different methods in which they are used, providing step-by-step image processing and sample data. It also discusses how smart UAVs will provide unique opportunities for manufacturers to utilise new technological trends to overcome the current challenges of UAV applications. The book will be of great interest to researchers engaged in forest carbon measurement, road patrolling, plantation monitoring, crop yield estimation, crop damage assessment, terrain modelling, fertilizer control, and pest control.
This book provides a complete overview of the theory, design, and applications of unmanned aerial vehicles. It covers the basics, including definitions, attributes, manned vs. unmanned, design considerations, life cycle costs, architecture, components, air vehicle, payload, communications, data link, and ground control stations. Chapters cover types and civilian roles, sensors and characteristics, alternative power, communications and data links, conceptual design, human machine interface, sense and avoid systems, civil airspace issues and integration efforts, navigation, autonomous control, swarming, and future capabilities.
This collection of proceedings from the International Conference on Systems Engineering, Las Vegas, 2014 is orientated toward systems engineering, including topics like aero-space, power systems, industrial automation and robotics, systems theory, control theory, artificial intelligence, signal processing, decision support, pattern recognition and machine learning, information and communication technologies, image processing, and computer vision as well as its applications. The volume’s main focus is on models, algorithms, and software tools that facilitate efficient and convenient utilization of modern achievements in systems engineering.
There is increasing interest in the potential of UAV (Unmanned Aerial Vehicle) and MAV (Micro Air Vehicle) technology and their wide ranging applications including defence missions, reconnaissance and surveillance, border patrol, disaster zone assessment and atmospheric research. High investment levels from the military sector globally is driving research and development and increasing the viability of autonomous platforms as replacements for the remotely piloted vehicles more commonly in use. UAV/UAS pose a number of new challenges, with the autonomy and in particular collision avoidance, detect and avoid, or sense and avoid, as the most challenging one, involving both regulatory and technical issues. Sense and Avoid in UAS: Research and Applications covers the problem of detect, sense and avoid in UAS (Unmanned Aircraft Systems) in depth and combines the theoretical and application results by leading academics and researchers from industry and academia. Key features: Presents a holistic view of the sense and avoid problem in the wider application of autonomous systems Includes information on human factors, regulatory issues and navigation, control, aerodynamics and physics aspects of the sense and avoid problem in UAS Provides professional, scientific and reliable content that is easy to understand, and Includes contributions from leading engineers and researchers in the field Sense and Avoid in UAS: Research and Applications is an invaluable source of original and specialised information. It acts as a reference manual for practising engineers and advanced theoretical researchers and also forms a useful resource for younger engineers and postgraduate students. With its credible sources and thorough review process, Sense and Avoid in UAS: Research and Applications provides a reliable source of information in an area that is fast expanding but scarcely covered.
Unmanned Aerial Systems: Theoretical Foundation and Applications presents some of the latest innovative approaches to drones from the point-of-view of dynamic modeling, system analysis, optimization, control, communications, 3D-mapping, search and rescue, surveillance, farmland and construction monitoring, and more. With the emergence of low-cost UAS, a vast array of research works in academia and products in the industrial sectors have evolved. The book covers the safe operation of UAS, including, but not limited to, fundamental design, mission and path planning, control theory, computer vision, artificial intelligence, applications requirements, and more. This book provides a unique reference of the state-of-the-art research and development of unmanned aerial systems, making it an essential resource for researchers, instructors and practitioners. - Covers some of the most innovative approaches to drones - Provides the latest state-of-the-art research and development surrounding unmanned aerial systems - Presents a comprehensive reference on unmanned aerial systems, with a focus on cutting-edge technologies and recent research trends in the area
Unmanned Aircraft Systems (UAS) have seen unprecedented levels of growth during the last decade in both military and civilian domains. It is anticipated that civilian applications will be dominant in the future, although there are still barriers to be overcome and technical challenges to be met. Integrating UAS into, for example, civilian space, navigation, autonomy, see-detect-and-avoid systems, smart designs, system integration, vision-based navigation and training, to name but a few areas, will be of prime importance in the near future. This special volume is the outcome of research presented at the International Symposium on Unmanned Aerial Vehicles, held in Orlando, Florida, USA, from June 23-25, 2008, and presents state-of-the-art findings on topics such as: UAS operations and integration into the national airspace system; UAS navigation and control; micro-, mini-, small UAVs; UAS simulation testbeds and frameworks; UAS research platforms and applications; UAS applications. This book aims at serving as a guide tool on UAS for engineers and practitioners, academics, government agencies and industry. Previously published in the Journal of Intelligent and Robotic Systems, 54 (1-3, 2009).
Unmanned aerial vehicles (UAVs) have been widely adopted in the military world over the last decade and the success of these military applications is increasingly driving efforts to establish unmanned aircraft in non-military roles. Introduction to UAV Systems, 4th edition provides a comprehensive introduction to all of the elements of a complete Unmanned Aircraft System (UAS). It addresses the air vehicle, mission planning and control, several types of mission payloads, data links and how they interact with mission performance, and launch and recovery concepts. This book provides enough information to encourage a student to learn more; to provide a specialist with a basic appreciation of the technical issues that drive other parts of the system and interact with their specialty; or to help a program manager understand system-level tradeoffs and know what questions to ask. Key features: Comprehensive overview of all elements of a UAS and of how they interact. Introduces the underlying concepts of key subsystems. Emphasizes system-integration issues and how they relate to subsystem design choices. Practical discussion of issues informed by lessons learned in UAV programs. Introduction to UAV Systems, 4th edition is written both for newcomers to the subject and for experienced members of the UAV community who desire a comprehensive overview at the system level. As well as being a primary text for an introductory course on UAS or a supplementary text in a course that goes into more depth in one of the individual technologies involved in a UAS, this book is a useful overview for practicing engineers, researchers, managers, and consultants interested in UAV systems.
Applications of Machine Learning in UAV Networks presents a pioneering exploration into the symbiotic relationship between machine learning techniques and UAVs. In an age where UAVs are revolutionizing sectors as diverse as agriculture, environmental preservation, security, and disaster response, this meticulously crafted volume offers an analysis of the manifold ways machine learning drives advancements in UAV network efficiency and efficacy. This book navigates through an expansive array of domains, each demarcating a pivotal application of machine learning in UAV networks. From the precision realm of agriculture and its dynamic role in yield prediction to the ecological sensitivity of biodiversity monitoring and habitat restoration, the contours of each domain are vividly etched. These explorations are not limited to the terrestrial sphere; rather, they extend to the pivotal aerial missions of wildlife conservation, forest fire monitoring, and security enhancement, where UAVs adorned with machine learning algorithms wield an instrumental role. Scholars and practitioners from fields as diverse as machine learning, UAV technology, robotics, and IoT networks will find themselves immersed in a confluence of interdisciplinary expertise. The book's pages cater equally to professionals entrenched in agriculture, environmental studies, disaster management, and beyond.
Urban Remote Sensing The second edition of Urban Remote Sensing is a state-of-the-art review of the latest progress in the subject. The text examines how evolving innovations in remote sensing allow to deliver the critical information on cities in a timely and cost-effective way to support various urban management activities and the scientific research on urban morphology, socio-environmental dynamics, and sustainability. Chapters are written by leading scholars from a variety of disciplines including remote sensing, GIS, geography, urban planning, environmental science, and sustainability science, with case studies predominately drawn from North America and Europe. A review of the essential and emerging research areas in urban remote sensing including sensors, techniques, and applications, especially some critical issues that are shifting the ­directions in urban remote sensing research. Illustrated in full color throughout, including numerous relevant case studies and extensive discussions of important concepts and cutting-edge technologies to enable clearer understanding for non-technical audiences. Urban Remote Sensing, Second Edition will be of particular interest to upper-division undergraduate and graduate students, researchers and professionals working in the fields of remote sensing, geospatial information, and urban & environmental planning.