Download Free Engineering Systems With Intelligence Book in PDF and EPUB Free Download. You can read online Engineering Systems With Intelligence and write the review.

In this 2012 edition of Advances in Knowledge-Based and Intelligent Information and Engineering Systems the latest innovations and advances in Intelligent Systems and related areas are presented by leading experts from all over the world. The 228 papers that are included cover a wide range of topics. One emphasis is on Information Processing, which has become a pervasive phenomenon in our civilization. While the majority of Information Processing is becoming intelligent in a very broad sense, major research in Semantics, Artificial Intelligence and Knowledge Engineering supports the domain specific applications that are becoming more and more present in our everyday living. Ontologies play a major role in the development of Knowledge Engineering in various domains, from Semantic Web down to the design of specific Decision Support Systems. Research on Ontologies and their applications is a highly active front of current Computational Intelligence science that is addressed here. Other subjects in this volume are modern Machine Learning, Lattice Computing and Mathematical Morphology.The wide scope and high quality of these contributions clearly show that knowledge engineering is a continuous living and evolving set of technologies aimed at improving the design and understanding of systems and their relations with humans.
This book contains a selection of papers presented at the "European Robotics and Intelligent Systems Conference" (EURISCON '91) held in Corfu. Greece (June 23-28. 1991). It is devoted to the analysis. design and applications of technological systems with built-in intelligence achieved through appropriate blending of mathematical, symbolic. sensing. computer processing. and feedback control concepts. methods and software / hardware tools. System intelligence includes human-like capabilities such as learning. observation. perception. interpretation. reasoning. planning. decision making. and action. Integrated intelligent decision and control systems obey Saridis' prinCiple of Increasing Precision with Decreasing Intelligence (IPDI). and have a hierarchical structure with three basic levels. namely Organization. Coordination. and Execution Levels. As we proceed from the organization to the execution level. the precision about the jobs to be completed increases and accordingly the intelligence reqUired for these jobs decreases. As an example. it is mentioned here that in an intelligent robotic system the organization tasks can be realized using a neural net. the coordination tasks by a Petri net. and the execution tasks by local sensors and actuators. The field of intelligent systems is a new interdisciplinary field with continuously increasing interest and expansion. It is actually the outcome of the synergetic interaction and cooperation of classical fields such as system theory. control theory. artificial intelligence. operational research. information theory. electronics. communications. and others.
Engineering practice often has to deal with complex systems of multiple variable and multiple parameter models almost always with strong non-linear coupling. The conventional analytical techniques-based approaches for describing and predicting the behaviour of such systems in many cases are doomed to failure from the outset, even in the phase of the construction of a more or less appropriate mathematical model. These approaches normally are too categorical in the sense that in the name of “modelling accuracy” they try to describe all the structural details of the real physical system to be modelled. This can significantly increase the intricacy of the model and may result in a enormous computational burden without achieving considerable improvement of the solution. The best paradigm exemplifying this situation may be the classic perturbation theory: the less significant the achievable correction, the more work has to be invested to obtain it. A further important component of machine intelligence is a kind of “structural uniformity” giving room and possibility to model arbitrary particular details a priori not specified and unknown. This idea is similar to the ready-to-wear industry, which introduced products, which can be slightly modified later on in contrast to tailor-made creations aiming at maximum accuracy from the beginning. These subsequent corrections can be carried out by machines automatically. This “learning ability” is a key element of machine intelligence. The past decade confirmed that the view of typical components of the present soft computing as fuzzy logic, neural computing, evolutionary computation and probabilistic reasoning are of complementary nature and that the best results can be applied by their combined application. Today, the two complementary branches of Machine Intelligence, that is, Artificial Intelligence and Computational Intelligence serve as the basis of Intelligent Engineering Systems. The huge number of scientific results published in Journal and conference proceedings worldwide substantiates this statement. The present book contains several articles taking different viewpoints in the field of intelligent systems.
The book is a collection of high-quality peer-reviewed research papers presented in the International Conference on Artificial Intelligence and Evolutionary Computations in Engineering Systems (ICAIECES 2017). The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. Researchers from academia and industry have presented their original work and ideas, information, techniques and applications in the field of communication, computing and power technologies.
The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems (ICAEES 2014) held at Noorul Islam Centre for Higher Education, Kumaracoil, India. These research papers provide the latest developments in the broad area of use of artificial intelligence and evolutionary algorithms in engineering systems. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.
When men of knowledge impart this knowledge, I do not mean they will convince your reason. I mean they will awaken in you the faith that it is so. - Sri Krishna, Bhagavadgita BACKGROUND The use of computers has led to significant productivity increases in the en gineering industry. Most ofthe computer-aided engineering applications were . restricted to algorithmic computations, such as finite element programs and circuit analysis programs. However, a number ofproblems encountered in en gineering are not amenable to purely algorithmic solutions. These problems are often ill-structured; the term ill-structured problems is used here to de note problems that do not have a clearly defined algorithmic solution. An experienced engineer deals with these ill-structured problems using his/her judgment and experience. The knowledge-based systems (KBS) technology, which emerged out of research in artificial intelligence (AI), offers a method ologyto solve these ill-structuredengineering problems. The emergenceofthe KBS technology can be viewed as the knowledge revolution: other important events that led to increased productivity are the industrial revolution (17th century); the invention of the transistor and associated developments (first half of the 20th century); and the world-wide web (towards the end of the 20th century). Kurzweil, in a lecture at M. LT on December 3, 1987, linked the progress of automation to two industrial revolutions: the first industrial PREFACE xxxii revolution leveraged our physical capabilities, whereas the second industrial revolution - the knowledge revolution - is expected leverage oUr mental ca pabilities.
Industrial engineering is a branch of engineering dealing with the optimization of complex processes or systems. It is concerned with the development, improvement, implementation and evaluation of production and service systems. Computational Intelligence Systems find a wide application area in industrial engineering: neural networks in forecasting, fuzzy sets in capital budgeting, ant colony optimization in scheduling, Simulated Annealing in optimization, etc. This book will include most of the application areas of industrial engineering through these computational intelligence systems. In the literature, there is no book including many real and practical applications of Computational Intelligence Systems from the point of view of Industrial Engineering. Every chapter will include explanatory and didactic applications. It is aimed that the book will be a main source for MSc and PhD students.
Expert guidance on theory and practice in condition-based intelligent machine fault diagnosis and failure prognosis Intelligent Fault Diagnosis and Prognosis for Engineering Systems gives a complete presentation of basic essentials of fault diagnosis and failure prognosis, and takes a look at the cutting-edge discipline of intelligent fault diagnosis and failure prognosis technologies for condition-based maintenance. It thoroughly details the interdisciplinary methods required to understand the physics of failure mechanisms in materials, structures, and rotating equipment, and also presents strategies to detect faults or incipient failures and predict the remaining useful life of failing components. Case studies are used throughout the book to illustrate enabling technologies. Intelligent Fault Diagnosis and Prognosis for Engineering Systems offers material in a holistic and integrated approach that addresses the various interdisciplinary components of the field--from electrical, mechanical, industrial, and computer engineering to business management. This invaluably helpful book: * Includes state-of-the-art algorithms, methodologies, and contributions from leading experts, including cost-benefit analysis tools and performance assessment techniques * Covers theory and practice in a way that is rooted in industry research and experience * Presents the only systematic, holistic approach to a strongly interdisciplinary topic
This book reflects the work of top scientists in the field of intelligent control and its applications, prognostics, diagnostics, condition based maintenance and unmanned systems. It includes results, and presents how theory is applied to solve real problems.
The third edition of this bestseller examines the principles of artificial intelligence and their application to engineering and science, as well as techniques for developing intelligent systems to solve practical problems. Covering the full spectrum of intelligent systems techniques, it incorporates knowledge-based systems, computational intelligence, and their hybrids. Using clear and concise language, Intelligent Systems for Engineers and Scientists, Third Edition features updates and improvements throughout all chapters. It includes expanded and separated chapters on genetic algorithms and single-candidate optimization techniques, while the chapter on neural networks now covers spiking networks and a range of recurrent networks. The book also provides extended coverage of fuzzy logic, including type-2 and fuzzy control systems. Example programs using rules and uncertainty are presented in an industry-standard format, so that you can run them yourself. The first part of the book describes key techniques of artificial intelligence—including rule-based systems, Bayesian updating, certainty theory, fuzzy logic (types 1 and 2), frames, objects, agents, symbolic learning, case-based reasoning, genetic algorithms, optimization algorithms, neural networks, hybrids, and the Lisp and Prolog languages. The second part describes a wide range of practical applications in interpretation and diagnosis, design and selection, planning, and control. The author provides sufficient detail to help you develop your own intelligent systems for real applications. Whether you are building intelligent systems or you simply want to know more about them, this book provides you with detailed and up-to-date guidance. Check out the significantly expanded set of free web-based resources that support the book at: http://www.adrianhopgood.com/aitoolkit/