Download Free Engineering For Earthquake Disaster Mitigation Book in PDF and EPUB Free Download. You can read online Engineering For Earthquake Disaster Mitigation and write the review.

"Geotechnical Engineering for Disaster Mitigation and Rehabilitation" presents the latest developments and case studies in the field. All contributions to this proceedings were rigorously reviewed to cover the newest developments in disasters related to earthquakes, landslides and slopes, soil dynamics, risk assessment and management, disaster mitigation and rehabilitation, and others. The book will be a useful reference for geotechnical scientists, engineers and professionals in these areas.
The Network for Earthquake Engineering Simulation (NEES), administered by the National Science Foundation (NSF), is scheduled to become operational in 2004. These network sites will perform a range of experiments to test and validate complex computer models being developed to simulate the behavior of structures subjected to earthquakes. To assist in this effort, the NSF requested the National Research Council(NRC) to frame the major questions to be addressed by and to develop a long-term research agenda for NEES. Preventing Earthquake Disasters presents an overview of the grand challenge including six critical research problems making up that challenge. The report also provides an assessment of earthquake engineering research issues and the role of information technology in that research effort, and a research plan for NEES.
Earthquake and tsunami disasters have been increasing rapidly and globally in the last quarter-century. The purpose of this book is to provide essential knowledge and information on the mitigation of earthquakes and tsunamis for graduate students, young researchers, and geotechnical engineers. It begins by presenting recent cases of earthquakes that have occurred in the world, referring to tsunamis and soil liquefaction and how to cope with such disasters. The final chapter proposes strategies for disaster mitigation against in Japan earthquakes and tsunamis in the future.
The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.
Initial priorities for U.S. participation in the International Decade for Natural Disaster Reduction, declared by the United Nations, are contained in this volume. It focuses on seven issues: hazard and risk assessment; awareness and education; mitigation; preparedness for emergency response; recovery and reconstruction; prediction and warning; learning from disasters; and U.S. participation internationally. The committee presents its philosophy of calls for broad public and private participation to reduce the toll of disasters.
This book explores practices and approaches on pre-disaster prevention and post-disaster reconstruction for vulnerable countries and areas enhancing earthquake disaster resilience. Destructive earthquakes have frequently occurred in urban or rural areas around the world, causing severe damage on human societies. Pre-earthquake prevention and post-earthquake reconstruction effect the disaster resilience building and long-term development of the affected communities and areas. In recent years, researchers from around the world have made a lot of efforts to study on the theme ‘earthquake disaster prevention and reconstruction’. The chapters in this edited volume contribute to the literature of earthquake disaster research from scientific, social and institutional aspects. These interdisciplinary studies mainly focus on human and policy dimensions of earthquake disaster, such as earthquake risk mitigation, social-physical resilience building, resilience capability assessment, healthcare surge capacity, house reconstruction, the roles of schools, households, civil societies and public participation in earthquake disaster prevention and reconstruction. The authors come from several counties, including China, Bangladesh, Iran, New Zealand, Saudi Arabia, the United Kingdom, Denmark, and Indonesia, covering the cases from those countries prone to earthquakes. These nine distinctive chapters have been elaborately selected and integrated from the international, ranked, peer-reviewed journal, Environmental Hazards.
Integrated Disaster Science and Management: Global Case Studies in Mitigation and Recovery bridges the gap between scientific research on natural disasters and the practice of disaster management. It examines natural hazards, including earthquakes, landslides and tsunamis, and uses integrated disaster management techniques, quantitative methods and big data analytics to create early warning models to mitigate impacts of these hazards and reduce the risk of disaster. It also looks at mitigation as part of the recovery process after a disaster, as in the case of the Nepal earthquake. Edited by global experts in disaster management and engineering, the book offers case studies that focus on the critical phases of disaster management. - Identifies advanced techniques and models based on natural disaster science for forecasting disasters and analyzing risk - Offers a holistic approach to the problem of disaster management, including preparation, recovery, and resilience - Includes coverage of social, economic, and environmental impacts on disasters
This book provides a timely review and summary of the recent advances in state-of-the-art earthquake geotechnics. The earthquake disasters in Japan and New Zealand in 2011 prompted the urgent need for the state-of-the-art earthquake geotechnics to be put into practice for disaster mitigation. By reviewing the developments in earthquake geotechnics over more than half a century, this unique book enables readers to obtain solid grasp of this discipline. It is based on contributions from 18 leading international experts, who met in Kyoto in June 2016 to discuss a range of issues related to the developments of earthquake geotechnics. It comprehensively discusses various areas of earthquake geotechnics, including performance-based seismic design; the evolution of geotechnical seismic response analysis from 1964-2015; countermeasures against liquefaction; solutions for nuclear power plant disasters; the tsunami-caused inundation of the Tokyo metropolitan area; and a series of state-of-the-art effective stress analyses of case histories from the 2011 East Japan Earthquake. The book is of interest to advanced level researchers and practicing engineers in the field of earthquake geotechnics.
This book focuses on problems encountered in areas of high risk for seismic events. It introduces the essential aspects of carrying out vulnerability assessments and applying practical measures to mitigate damage in hospitals addressing structural and nonstructural aspects as well as administrative and internal organization. In a period of only 15 years between 1981 and 1996 93 hospitals and 538 health care centers in Latin America and the Caribbean were damaged as a consequence of natural disasters. The direct cost of these disasters has been enormous; just as devastating has been the social impact of the loss of these critical facilities at a time when they were most needed. For these reasons special consideration must be given to disaster planning for these facilities. Assessing and reducing their vulnerability to natural hazards is indispensable. Principles of Disaster Mitigation in Health Facilities is an updated compilation of various documents on the topic already published by PAHO/WHO. Sections of previous publications have been revised to address the needs of professionals from a variety of disciplines particularly those involved in health facility planning operation and maintenance. Figures and photographs illustrate situations that can increase disaster vulnerability in health facilities. Examples are given of how countries in Latin America have conducted vulnerability assessments and applied specific disaster mitigation measures in their hospitals and health centers.
Social science research conducted since the late 1970's has contributed greatly to society's ability to mitigate and adapt to natural, technological, and willful disasters. However, as evidenced by Hurricane Katrina, the Indian Ocean tsunami, the September 11, 2001 terrorist attacks on the United States, and other recent events, hazards and disaster research and its application could be improved greatly. In particular, more studies should be pursued that compare how the characteristics of different types of events-including predictability, forewarning, magnitude, and duration of impact-affect societal vulnerability and response. This book includes more than thirty recommendations for the hazards and disaster community.