Download Free Engineering Curricula Book in PDF and EPUB Free Download. You can read online Engineering Curricula and write the review.

In April 2009 a workshop was held to explore how engineering curricula could be enhanced to better prepare future engineers. The workshop, summarized in this volume, included individuals from industry, academia, government agencies, and professional societies. During the workshop participants addressed the rationale for the scope and sequence of current engineering curricula, considering both the positive aspects as well as those aspects that have outlived their usefulness. Other topics of discussion included the potential to enhance engineering curricula through creative uses of instructional technologies; the importance of inquiry-based activities as well as authentic learning experiences grounded in real world contexts; and the opportunities provided by looking more deeply at what personal and professional outcomes result from studying engineering. General themes that appeared to underlie the workshop attendees' discussions included desires to (a) restructure engineering curricula to focus on inductive teaching and learning, (b) apply integrated, just-in-time learning of relevant topics across STEM fields, and (c) make more extensive use and implementation of learning technologies. During breakout discussions, many additional suggestions were offered for means by which to facilitate curricular innovation.
How to engineer change in your elementary science classroom With the Next Generation Science Standards, your students won’t just be scientists—they’ll be engineers. But you don’t need to reinvent the wheel. Seamlessly weave engineering and technology concepts into your PreK-5 math and science lessons with this collection of time-tested engineering curricula for science classrooms. Features include: A handy table that leads you straight to the chapters you need In-depth commentaries and illustrative examples A vivid picture of each curriculum, its learning goals, and how it addresses the NGSS More information on the integration of engineering and technology into elementary science education
How to engineer change in your high school science classroom With the Next Generation Science Standards, your students won’t just be scientists—they’ll be engineers. But you don’t need to reinvent the wheel. Seamlessly weave engineering and technology concepts into your high school math and science lessons with this collection of time-tested engineering curricula for science classrooms. Features include: A handy table that leads you straight to the chapters you need In-depth commentaries and illustrative examples A vivid picture of each curriculum, its learning goals, and how it addresses the NGSS More information on the integration of engineering and technology into high school science education
Including considerations of sustainability in universities’ activities has long since become mainstream. However, there is still much to be done with regard to the full integration of sustainability thinking into science and engineering curricula. Among the problems that hinder progress in this field, the lack of sound information on how to actually implement it is prominent. Created in order to address this need, this book presents a wealth of information on innovative approaches, methods and tools that may be helpful in translating sustainability principles into practice.
How to engineer change in your middle school science classroom With the Next Generation Science Standards, your students won’t just be scientists—they’ll be engineers. But you don’t need to reinvent the wheel. Seamlessly weave engineering and technology concepts into your middle school math and science lessons with this collection of time-tested engineering curricula for science classroom materials. Features include: A handy table that leads you to the chapters you need In-depth commentaries and illustrative examples A vivid picture of each curriculum, its learning goals, and how it addresses the NGSS More information on the integration of engineering and technology into middle school science education
In an increasingly complex, competitive, and global world, organizations require highly skilled professionals who have the capacity to proactively answer challenges. Thus, educational institutions must update the curricula of their courses to better contribute to the training and development of professionals in order to ensure that they are prepared to face increasing levels of organizational competitiveness. Higher Education and the Evolution of Management, Applied Sciences, and Engineering Curricula is a collection of innovative research that fosters discussion on the evolution of higher-education in management, applied sciences, and engineering with an emphasis on curriculum development, pedagogy, didactic aspects, and sustainable education. This publication presents models, theories, and tools that allow individuals to take a more strategic role in their organizations. It is ideally designed for managers, engineers, human resource officials, academicians, researchers, administrators, and lecturers.
Shows how the engineering curriculum can be a site for rendering social justice visible in engineering, for exploring complex socio-technical interplays inherent in engineering practice, and for enhancing teaching and learning Using social justice as a catalyst for curricular transformation, Engineering Justice presents an examination of how politics, culture, and other social issues are inherent in the practice of engineering. It aims to align engineering curricula with socially just outcomes, increase enrollment among underrepresented groups, and lessen lingering gender, class, and ethnicity gaps by showing how the power of engineering knowledge can be explicitly harnessed to serve the underserved and address social inequalities. This book is meant to transform the way educators think about engineering curricula through creating or transforming existing courses to attract, retain, and motivate engineering students to become professionals who enact engineering for social justice. Engineering Justice offers thought-provoking chapters on: why social justice is inherent yet often invisible in engineering education and practice; engineering design for social justice; social justice in the engineering sciences; social justice in humanities and social science courses for engineers; and transforming engineering education and practice. In addition, this book: Provides a transformative framework for engineering educators in service learning, professional communication, humanitarian engineering, community service, social entrepreneurship, and social responsibility Includes strategies that engineers on the job can use to advocate for social justice issues and explain their importance to employers, clients, and supervisors Discusses diversity in engineering educational contexts and how it affects the way students learn and develop Engineering Justice is an important book for today’s professors, administrators, and curriculum specialists who seek to produce the best engineers of today and tomorrow.
Traditionally, engineering education books describe and reinforce unchanging principles that are basic to the field. However, the dramatic changes in the engineering environment during the last decade demand a paradigm shift from the engineering education community. This revolutionary volume addresses the development of long-term strategies for an engineering education system that will reflect the needs and realities of the United States and the world in the 21st century. The authors discuss the critical challenges facing U.S. engineering education and present a plan addressing these challenges in the context of rapidly changing circumstances, technologies, and demands.
PBL in Engineering Education: International Perspectives on Curriculum Change presents diverse views on the implementation of PBL from across the globe. The purpose is to exemplify curriculum changes in engineering education. Drivers for change, implementation descriptions, challenges and future perspectives are addressed. Cases of PBL models are presented from Singapore, Malaysia, Tunisia, Portugal, Spain and the USA. These cases are stories of thriving success that can be an inspiration for those who aim to implement PBL and change their engineering education practices. In the examples presented, the change processes imply a transformation of vision and values of what learning should be, triggering a transition from traditional learning to PBL. In this sense, PBL is also a learning philosophy and different drivers, facing diverse challenges and involving different actors, trigger its implementation. This book gathers experiences, practices and models, through which is given a grasp of the complexity, multidimensional, systemic and dynamic nature of change processes. Anette Kolmos, director of Aalborg PBL Centre, leads off the book by presenting different strategies to curriculum change, addressing three main strategies of curriculum change, allowing the identification of three types of institutions depending on the type of strategy used. Following chapters describe each of the PBL cases based upon how they implement the seven components of PBL: (i) objectives and knowledge; (ii) types of problems, projects and lectures; (iii) progression, size and duration; (iv) students’ learning; (v) academic staff and facilitation; (vi) space and organization; and (vii) assessment and evolution. The book concludes with a chapter summarizing all chapters and providing an holistic perspective of change processes.