Download Free Engineering Characteristics Of Arid Soils Book in PDF and EPUB Free Download. You can read online Engineering Characteristics Of Arid Soils and write the review.

Soils formed or now existing under arid climatic conditions cover more than one-third of the world's land surface. Many have unique characteristics which can pose difficult geotechnical problems. This text considers these problems and suggests ways of overcoming them.
Following on from the first two volumes, published in 2002, volumes 3 and 4 of Characterisation and Engineering Properties of Natural Soils review laboratory testing, in-situ testing, and methods of characterising natural soil variability, illustrated by actual site data. Less well-documented soil types are highlighted and the various papers take i
ICE Manual of Geotechnical Engineering, Second edition brings together an exceptional breadth of material to provide a definitive reference on geotechnical engineering solutions. Written and edited by leading specialists, each chapter provides contemporary guidance and best practice knowledge for civil and structural engineers in the field.
Management of Problem Soils in Arid Ecosystems examines the challenges of managing soils in arid and semiarid regions. These soils contain low organic matter, are not leached, and accumulate lime, gypsum, and/or soluble salts, requiring special management and practices. This book discusses how to identify problems, reclaim the soils, and then use them efficiently and economically. Water management and desertification in these areas are also discussed. It contains extensive references as well as 40 tables and illustrations.
The definitive guide to unsaturated soil— from the world's experts on the subject This book builds upon and substantially updates Fredlund and Rahardjo's publication, Soil Mechanics for Unsaturated Soils, the current standard in the field of unsaturated soils. It provides readers with more thorough coverage of the state of the art of unsaturated soil behavior and better reflects the manner in which practical unsaturated soil engineering problems are solved. Retaining the fundamental physics of unsaturated soil behavior presented in the earlier book, this new publication places greater emphasis on the importance of the "soil-water characteristic curve" in solving practical engineering problems, as well as the quantification of thermal and moisture boundary conditions based on the use of weather data. Topics covered include: Theory to Practice of Unsaturated Soil Mechanics Nature and Phase Properties of Unsaturated Soil State Variables for Unsaturated Soils Measurement and Estimation of State Variables Soil-Water Characteristic Curves for Unsaturated Soils Ground Surface Moisture Flux Boundary Conditions Theory of Water Flow through Unsaturated Soils Solving Saturated/Unsaturated Water Flow Problems Air Flow through Unsaturated Soils Heat Flow Analysis for Unsaturated Soils Shear Strength of Unsaturated Soils Shear Strength Applications in Plastic and Limit Equilibrium Stress-Deformation Analysis for Unsaturated Soils Solving Stress-Deformation Problems with Unsaturated Soils Compressibility and Pore Pressure Parameters Consolidation and Swelling Processes in Unsaturated Soils Unsaturated Soil Mechanics in Engineering Practice is essential reading for geotechnical engineers, civil engineers, and undergraduate- and graduate-level civil engineering students with a focus on soil mechanics.
In November 2015, Buenos Aires, Argentina became the location of several important events for geo-professionals, with the simultaneous holding of the 6th International Symposium on Deformation Characteristics of Geomaterials, the 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering (XV PCSMGE), the 8th South American Congress on Rock Mechanics (SCRM), as well as the 22nd Argentinean Congress of Geotechnical Engineering (CAMSIGXXII). This synergy provided a unique opportunity to exchange ideas and discuss current and future practices in the areas of soil mechanics and rock mechanics, and their applications in civil, energy, environmental, and mining engineering. This book presents the proceedings of the 6th International Symposium on Deformation Characteristics of Geomaterials. As well as 118 articles selected for publication after peer review, it includes 7 lectures delivered by invited keynote speakers and the Third Bishop Lecture, delivered by Professor Herve Di Benedetto of the University of Lyon, France, who presented a reference work on the advanced testing and modeling of bituminous bounded and unbounded granular materials. The conference brought together practitioners, researchers and educators from around the world engaged in the understanding of the deformation properties of geo-materials before failure, and the small strain parameters as fundamental characteristics of geo-materials. The main topics covered by the symposium include experimental investigations from very small strains to beyond failure, including multi-physical approach; HTC M coupling behavior, characterization and modeling of various geo-materials and interfaces; and practical prediction and interpretation of ground responses: field observation and case histories.
This volume provides an authoritative and comprehensive state-of-the-art review of hot desert terrains in all parts of the world, their geomaterials and influence on civil engineering site investigation, design and construction. It primarily covers conditions and materials in modern hot deserts, but there is also coverage of unmodified ancient desert soils that exhibit engineering behaviour similar to modern desert materials. Thorough and up-to-date guidance on modern field evaluation and ground investigation techniques in hot arid areas is provided, including reference to a new approach to the desert model and detailed specialised assessments of the latest methods for materials characterisation and testing. The volume is based on world-wide experience in hot desert terrain and draws upon the knowledge and expertise of the members of a Geological Society Engineering Group Working Party comprising practising geologists, geomorphologists and civil engineers with a wealth of varied, but complementary experience of working in hot deserts. It is an essential reference book for professionals, as well as a valuable textbook for students. It is written in a style that is accessible to the non-specialist. A comprehensive glossary is also included. The Geological Society of London. Founded in 1807, the Geological Society of London is the oldest geological society in the world, and one of the largest publishers in the Earth sciences. The Society publishes a wide range of high-quality peer-reviewed titles for academics and professionals working in the geosciences, and enjoys an enviable international reputation for the quality of its work.
Residual soils are found in many parts of the world. Like other soils, they are used extensively in construction, either to build upon, or as construction material. They are formed when the rate of rock weathering is more rapid than transportation of the weathered particles by e.g., water, gravity and wind, which results in a large share of the soils formed remaining in place. The soils typically retain many of the characteristics of the parent rock. In a tropical region, residual soil layers can be very thick, sometimes extending to hundreds of meters before reaching un-weathered rock. Unlike the more familiar transported sediment soil, the engineering properties and behaviour of tropical residual soils may vary widely from place to place depending upon the rock of origin and the local climate during their formation; and hence are more difficult to predict and model mathematically. Despite their abundance and significance our knowledge and understanding of these soils is not as extensive as that of transported sediment soil. Written by residual soil specialists from various parts of the world, this unique handbook presents data, knowledge and expertise on the subject. It provides insight into the engineering behaviour of tropical residual soils, which will be applicable to small or extensive construction works worldwide on such soils. This book covers almost all aspects of residual soils, from genesis, classification, formation, sampling and testing to behaviour of weakly bonded and unsaturated soil, volume change and shear strength. It features chapters on applications in slopes and foundation, as well as dedicated parts on residual soils in India, Hong Kong and Southeast Asia. A large number of graphs, tables, maps and references throughout the text provide further detail and insight. This volume is intended as a reference guide for practitioners, researchers and advanced students in civil, construction and geological engineering. Unique in its coverage of the subject, it may serve as a standard that benefits every engineer involved in geological, foundation and construction work in tropical residual soils.
This volume includes a collection of technical papers on an important topic in geotechnical engineering; the behavior and treatment of expansive soils. The research studies include investigations into novel stabilization techniques for expansive soils using different admixtures or mechanical consolidation techniques, as well as new experimental approaches to evaluate the behavior of expansive soils. They also include an evaluation of wetting boundary conditions on the volume change of expansive soils, as well as the role of hydrologic boundary conditions in arid climates. The volume is based on the best contributions to the 2nd GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2018 – The official international congress of the Soil-Structure Interaction Group in Egypt (SSIGE).