Download Free Engineering And Physical Science Book in PDF and EPUB Free Download. You can read online Engineering And Physical Science and write the review.

Mathematics for Physical Science and Engineering is a complete text in mathematics for physical science that includes the use of symbolic computation to illustrate the mathematical concepts and enable the solution of a broader range of practical problems. This book enables professionals to connect their knowledge of mathematics to either or both of the symbolic languages Maple and Mathematica. The book begins by introducing the reader to symbolic computation and how it can be applied to solve a broad range of practical problems. Chapters cover topics that include: infinite series; complex numbers and functions; vectors and matrices; vector analysis; tensor analysis; ordinary differential equations; general vector spaces; Fourier series; partial differential equations; complex variable theory; and probability and statistics. Each important concept is clarified to students through the use of a simple example and often an illustration. This book is an ideal reference for upper level undergraduates in physical chemistry, physics, engineering, and advanced/applied mathematics courses. It will also appeal to graduate physicists, engineers and related specialties seeking to address practical problems in physical science. - Clarifies each important concept to students through the use of a simple example and often an illustration - Provides quick-reference for students through multiple appendices, including an overview of terms in most commonly used applications (Mathematica, Maple) - Shows how symbolic computing enables solving a broad range of practical problems
This new edition of the Newnes Engineering and Physical Science Pocket Book, contains much new and updated material, including data on auto, isolating, three-phase, current and voltage transformers, d.c. machines and induction motors, complex wave forms and field theory, ensuring that this volume has all the information the student, engineer, scientist or technician may need, at their fingertips. Formulae, definitions and general information are presented logically and clearly, allowing the user to access specific data quickly and easily without having to wade through extraneous material. This handy reference book is relevant to a wide range of students and technicians at all levels. J O Bird is the author of many successful textbooks in the areas of engineering, mathematics and science. P J Chivers is the author of several textbooks on chemistry.
Covers the basic principles and theories of engineering physics and offers a balance between theoretical concepts and their applications. It is designed as a textbook for an introductory course in engineering physics. Beginning with a comprehensive discussion on oscillations and waves with applications in the field of mechanical and electrical engineering, it goes on to explain the basic concepts such as Huygen's principle, Fresnel's biprism, Fraunhofer diffraction and polarization. Emphasis has been given to an understanding of the basic concepts and their applications to a number of engineering problems. Each topic has been discussed in detail, both conceptually and mathematically. Pedagogical features including solved problems, unsolved exercised and multiple choice questions are interspersed throughout the book. This will help undergraduate students of engineering acquire skills for solving difficult problems in quantum mechanics, electromagnetism, nanoscience, energy systems and other engineering disciplines.
Dimensionless quantities, such as p, e, and f are used in mathematics, engineering, physics, and chemistry. In recent years the dimensionless groups, as demonstrated in detail here, have grown in significance and importance in contemporary mathematical and computer modeling as well as the traditional fields of physical modeling. This book offers the most comprehensive and up to date resource for dimensionless quantities, providing not only a summary of the quantities, but also a clarification of their physical principles, areas of use, and other specific properties across multiple relevant fields. Presenting the most complete and clearly explained single resource for dimensionless groups, this book will be essential for students and researchers working across the sciences. - Includes approximately 1,200 dimensionless quantities - Features both classic and newly developing fields - Easy to use with clear organization and citations to relevant works
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Newnes Engineering and Physical Science Pocket Book is an easy reference of engineering formulas, definitions, and general information. Part One deals with the definitions and formulas used in general engineering science, such as those concerning SI units, density, scalar and vector quantities, and standard quantity symbols and their units. Part Two pertains to electrical engineering science and includes basic d.c. circuit theory, d.c. circuit analysis, electromagnetism, and electrical measuring instruments. Part Three involves mechanical engineering and physical science. This part covers formulas on speed, velocity, acceleration, force, as well as definitions and discussions on waves, interference, diffraction, the effect of forces on materials, hardness, and impact tests. Part Four focuses on chemistry — atoms, molecules, compounds and mixtures. This part examines the laws of chemical combination, relative atomic masses, molecular masses, the mole concept, and chemical bonding in element or compounds. This part also discusses organic chemistry (carbon based except oxides, metallic carbonates, metallic hydrogen carbonate, metallic carbonyls) and inorganic chemistry (non-carbon elements). This book is intended as a reference for students, technicians, scientists, and engineers in their studies or work in electrical engineering, mechanical engineering, chemistry, and general engineering science.
Physics for Students of Science and Engineering is a calculus-based textbook of introductory physics. The book reviews standards and nomenclature such as units, vectors, and particle kinetics including rectilinear motion, motion in a plane, relative motion. The text also explains particle dynamics, Newton's three laws, weight, mass, and the application of Newton's laws. The text reviews the principle of conservation of energy, the conservative forces (momentum), the nonconservative forces (friction), and the fundamental quantities of momentum (mass and velocity). The book examines changes in momentum known as impulse, as well as the laws in momentum conservation in relation to explosions, collisions, or other interactions within systems involving more than one particle. The book considers the mechanics of fluids, particularly fluid statics, fluid dynamics, the characteristics of fluid flow, and applications of fluid mechanics. The text also reviews the wave-particle duality, the uncertainty principle, the probabilistic interpretation of microscopic particles (such as electrons), and quantum theory. The book is an ideal source of reference for students and professors of physics, calculus, or related courses in science or engineering.
This new resource introduces students and researchers to the fundamentals of the Physical Sciences. Entries are written in easy-to-understand language, so readers can use these entries as a solid starting-off point to develop a thorough understanding of this oftentimes confusing subject matter.
Topics include vector spaces and matrices; orthogonal functions; polynomial equations; asymptotic expansions; ordinary differential equations; conformal mapping; and extremum problems. Includes exercises and solutions. 1962 edition.